Microwave radiometry experiment for snow in Altay China: in situ time series of data for electromagnetic and physical features of snow pack and environment

The dataset include ground-based passive microwave brightness temperature, multi-angle brightness temperature, ten-minute 4-component radiation and snow temperature, daily snow pit data and hourly meteorological data observed at Altay base station(lon:88.07、lat: 44.73)from November 27, 2015 to March 26, 2016. Daily snow pit parameters include: snow stratification, stratification thickness, density, particle size, temperature. These data are stored in five NetCDF files: TBdata. nc, TBdata-multiangle. nc, ten-minute 4 component radiation and snow temperature. nc, hourly meteorological and soil data. nc and daily snow pit data.nc. TBdata. nc is brightness temperature at 3 channels for both polarizations automatically collected by a six-channel dual polarized microwave radiometer RPG-6CH-DP. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. TBdata-multiangle.nc is 7 groups of multi-angle brightness temperatures at 3 channels for both polarizations. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. The ten-minute 4 component radiation and snow temperature.nc contains 4 component radiation and layered snow temperatures. The contents include Year, month, day, hour, minute, SR_DOWN, SR_UP, LR_DOWN, LR_UP, T_Sensor, ST_0cm, ST_5cm, ST_15cm, ST_25cm, ST_35cm, ST_45cm, ST_55cm. The hourly meteorological and soil data.nc contains hourly weather data and layered soil data. The contents include Year, month, day, hour, Tair, Wair, Pair, Win, SM_10cm, SM_20cm, Tsoil_5cm, Tsoil_10cm, Tsoil_15 cm, Tsoil_20cm. The daily snow pit data.nc. is manual snow pit data. The observation time was 8:00-10:100 am local time. The contents include Year, month, day, snow depth, thickness_layer1, thickness_layer2, thickness_layer3, thickness_layer4, thickness_layer5, thickness_layer6, Long_layer1, Short_layer1, Long_layer2, Short_layer2, Long_layer3, Short_layer3, Long_layer 4, Short_layer4, Long_layer5, Short_layer5, Long_layer6, Short_layer 6, Stube, Snow shovel_0-10, Snow shovel _10-20, Snow shovel _20-30, Snow shovel _30-40, Snow shovel _40-50, Snow fork_5, Snow fork _10, Snow fork _15, Snow fork_20, Snow fork_25, Snow fork_30, Snow fork_35, Snow fork_40, Snow fork_45, Snow fork_50, shape1, shape2, shape3, shape4, shape5,

A dataset of daily near-surface air temperature in China from 1979 to 2018

Ta (Near-surface air temperature) is an important physical parameter that reflects climate change. In order to obtain daily Ta data (Tmax, Tmin, and Tavg) with high spatial and temporal resolution in China, we fully analyzed the advantages and disadvantages of various existing data (reanalysis, remote sensing, and in situ data) ,Different Ta reconstruction models are constructed for different weather conditions, and we further improve data accuracy through building correction equations for different regions. Finally, a dataset of daily temperature (Tmax, Tmin, and Tavg) in China from 1979 to 2018 was obtained with a spatial resolution of 0.1° For Tmax, validation using in situ data shows that the root mean square error (RMSE) ranges from 0.86 °C to 1.78 °C, the mean absolute error (MAE) varies from 0.63 °C to 1.40 °C, and the Pearson coefficient (R2) ranges from 0.96 to 0.99. For Tmin, RMSE ranges from 0.78 °C to 2.09 °C, the MAE varies from 0.58 °C to 1.61 °C, and the R2 ranges from 0.95 to 0.99. For Tavg, RMSE ranges from 0.35 °C to 1.00 °C, the MAE varies from 0.27 °C to 0.68 °C, and the R2 ranges from 0.99 to 1.00. Furthermore, a variety of evaluation indicators were used to analyze the temporal and spatial variation trends of Ta, and the Tavg increase was more than 0.0 °C/a, which is consistent with the general global warming trend. In conclusion, this dataset had a high spatial resolution and reliable accuracy, which makes up for the previous missing temperature value (Tmax, Tmin, and Tavg) at high spatial resolution. This dataset also provides key parameters for the study of climate change, especially high-temperature drought and low-temperature chilling damage。

Elevation dataset of ASTER_DEM in the Yellow river upstream (2009)

Ⅰ. Overview This dataset is derived from the global 30m-resolution digital elevation product dataset, which is processed using the data of the first version (v1) of ASTER GDEM. Its spatial resolution is 30m. Due to the influence of clouds, lines, pits, bulges, dams or other anomalies generated by the boundary stacking, there are local anomalies in the first version of the original data of ASTER GDEM, so the digital elevation processed by ASTER GDEM v1 Data products have data anomalies in individual areas, and users need to pay attention to them during use. In addition, this data set can complement the SRTM global 90m resolution elevation dataset. Ⅱ. Data processing description ASTER GDEM is a fully automated method to process and generate ASTER archived data of 1.5 million scenes, including 1,264,118 ASTER DEM data based on independent scenes generated through stereo correlation. After de-cloud processing, residual outliers are removed, and the average value is taken as the final pixel value of ASTER GDEM object area. After correcting the remaining abnormal data, the global ASTER GDEM data was generated by 1°× 1° sharding. Ⅲ. Data content description The dataset covers the entire upper reaches of the Yellow River, and each data file name is generated based on the latitude and longitude of the lower left (southwest) Angle of the fractal geometry center. For example, the lower-left coordinate of the ASTGTM_N40E116 file is 40 degrees north latitude and 116 degrees east longitude. ASTGTM_N40E116_dem and ASTGTM_N40E116_num correspond to digital elevation model (DEM) and quality control (QA) data, respectively. Ⅳ. Data usage description ASTER GDEM data can be calculated and visualized. It has a broad application prospect in various fields, especially in mapping, surface deformation and military fields.Specifically, it mainly includes the following aspects: In scientific research, ASTER GDEM data plays an important role in geology, geophysics, seismic research, horizontal modeling, volcano monitoring and remote sensing image registration.The three-dimensional model of the ground is built by using high-precision digital terrain elevation data, which can be embedded and superimposed with the image of the ground to observe subtle changes of the earth surface. In civil and industrial applications, ASTER GDEM data can be used for civil engineering calculation, dam site selection, land use planning, etc. In communications, digital topographic data can help businesses build better broadcast towers and determine the best location of mobile phone booths.In terms of aviation safety, ASTER GDEM digital elevation data can be used to establish the enhanced aircraft landing alarm system, which greatly improves the aircraft landing safety coefficient. In the military, ASTER GDEM data is the basic information platform of C4ISR (army automatic command system), which is indispensable in the study of battlefield regional structure, combat direction, battlefield preset, combat deployment, troop concentration in projection, protection conditions, logistics support and other aspects.