China meteorological assimilation driving datasets for the SWAT model Version 1.1 (2008-2016)

CMADS V1.1(The China Meteorological Assimilation Driving Datasets for the SWAT model Version 1.1) Version of the data set introduced the STMAS assimilation algorithm. It was constructed using multiple technologies and scientific methods, including loop nesting of data, projection of resampling models, and bilinear interpolation. The CMADS series of datasets can be used to drive various hydrological models, such as SWAT, the Variable Infiltration Capacity (VIC) model, and the Storm Water Management model (SWMM). It also allows users to conveniently extract a wide range of meteorological elements for detailed climatic analyses. Data sources for the CMADS series include nearly 40,000 regional automatic stations under China’s 2,421 national automatic and business assessment centres. This ensures that the CMADS datasets have wide applicability within the country, and that data accuracy was vastly improved. The CMADS series of datasets has undergone finishing and correction to match the specific format of input and driving data of SWAT models. This reduces the volume of complex work that model builders have to deal with. An index table of the various elements encompassing all of East Asia was also established for SWAT models. This allows the models to utilize the datasets directly, thus eliminating the need for any format conversion or calculations using weather generators. Consequently, significant improvements to the modelling speed and output accuracy of SWAT models were achieved. Most of the source data in the CMADS datasets are derived from CLDAS in China and other reanalysis data in the world. The integration of air temperature (2m), air pressure, humidity, and wind speed data (10m) was mainly achieved through the LAPS/STMAS system. Precipitation data were stitched using CMORPH’s global precipitation products and the National Meteorological Information Center’s data of China (which is based on CMORPH’s integrated precipitation products). The latter contains daily precipitation records observed at 2,400 national meteorological stations and the CMORPH satellite’s inversion precipitation products.The inversion algorithm for incoming solar radiation at the ground surface makes use of the discrete longitudinal method by Stamnes et al.(1988)to calculate radiation transmission. The resolutions for CMADS V1.0, V1.1, V1.2, and V1.3 were 1/3°, 1/4°, 1/8°, and 1/16°, respectively. In CMADS V1.0 (at a spatial resolution of 1/3°), East Asia was spatially divided into 195 × 300 grid points containing 58,500 stations. Despite being at the same spatial resolution as CMADS V1.0, CMADS V1.1 contains more data, with 260 × 400 grid points containing 104,000 stations. For both versions, the stations’ daily data include average solar radiation, average temperature (2m), average pressure, maximum and minimum temperature (2m), specific humidity, cumulative precipitation, and average wind speed (10m). The CMADS comprises other variables for any hydrological model(under 'For-other-model' folder): Daily Average Temperature (2m), Daily Maximum Temperature (2m), Daily Minimum Temperature (2m), Daily cumulative precipitation (20-20h), Daily average Relative Humidity, Daily average Specific Humidity, Daily average Solar Radiation, Daily average Wind (10m), and Daily average Atmospheric Pressure. Introduction to metadata of CMADS CMADS storage path description:(CMADS was divided into two datesets) 1.CMADS-V1.0 For-swat --specifically driving the SWAT model 2.CMADS-V1.0 For-other-model --specifically driving the other hydrological model(VIC,SWMM,etc.) CMADS-- For-swat-2009 folder contain:(Station and Fork ) 1).Station Relative-Humidity-58500 Daily average relative humidity(fraction) Precipitation-58500 Daily accumulated 24-hour precipitation(mm) Solar radiation-58500 Daily average solar radiation(MJ/m2) Tmperature-58500 Daily maximum and minimum 2m temperature(℃) Wind-58500 Daily average 10m wind speed(m/s) Where R, P, S, T, W+ dimensional grid number - the number of longitude grid is the station in the above five folders respectively.(Where R,P,S,T,W respective Daily average relative humidity,Daily cumulative precipitation(24h),Daily mean solar radiation(MJ/m2),Daily maximum and minimum temperature(℃) and Daily mean wind speed (m/s)) respectively.Data format is (.dbf) 2).Fork (Station index table over East Asia) PCPFORK.txt (Precipitation index table) RHFORK.txt (Relative humidity index table) SORFORK.txt (Solar radiation index table) TMPFORK.txt (Temperature index table) WINDFORK.txt (Wind speed index) CMADS-- For-swat-2012 folder contain:(Station and Fork ) Storage structure is consistency with For-swat- 2009 .However, all the data in this directory are only available in TXT format and can be readed by SWAT2012. 3) For-other-model (Includes all weather input data required by the any hydrologic model (daily).) Atmospheric-Pressure-txt Daily average atmospheric pressure(hPa) Average-Temperature-txt Daily average 2m temperature(℃) Maximum-Temperature-txt Daily maximum 2m temperature(℃) Minimum-Temperature-txt Daily minimum 2m temperature(℃) Precipitation-txt Daily accumulated 24-hour precipitation (mm) Relative-Humidity-txt Daily average relative humidity(fraction) Solar-Radiation-txt Daily average solar radiation(MJ/m2) Specific-Humidity-txt Daily average Specific Humidity(g/kg) Wind-txt Daily average 10m wind speed(m/s) Data storage information: data set storage format is .dbf and .txt Other data information: Total data:45GB Occupied space: 50GB Time: From year 2008 to year 2014 Time resolution: Daily Geographical scope description: East Asia Longitude: 60° E The most east longitude: 160°E North latitude: 65°N Most southern latitude: 0°N Number of stations: 58500 stations Spatial resolution: 1/3 * 1/3 * grid points Vertical range: None

Surface elevation time series over the Greenland Ice Sheet (1991-2020)

The elevation change of ice sheet is the comprehensive result of ice dynamic process and ice sheet surface process, and is sensitive to climate change. The long-term time series of ice sheet surface elevation is of great scientific value to study the stability of ice sheet and its response to climate change. Satellite altimetry observation missions have provided a large number of surface elevation observations over ice sheet. However, the life of a single satellite altimetry mission is limited. To obtain a long-term ice sheet surface elevation time series, different satellite altimetry missions need to be linked. We use an updated strategy of Plane-fit method to achieve cross-calibration the missions. After correcting the ascending-descending bias more fully, a larger amount of observations is used to correct the intermission bias. Meanwhile, an interpolation method based on the EOF reconstruction is used to suppress the influence of interpolation error. Finally, by combining the observations of ERS-1, ERS-2, Envisat and CryoSat-2, we successfully constructed the monthly surface elevation time series with 5-km grid resolution of the Greenland ice sheet for 30 years from 1991 to 2020. Subsequently, we used the airborne laser altimeter data from Operation IceBridge and the Greenland ice sheet surface elevation change product provided by ESA Climate Change Initiative (CCI) to validate the time series. It is found that our time series are reliable. The accuracy of ice sheet surface elevation changes obtained from our time series is 19.3% higher than that of ESA CCI products. Benefiting from our more accurate correction of intermission bias, the accuracy across the over the overlapping observation period of Envisat and CryoSat-2 missions are improved more, up to 30.9%. Based on this time series, we find that the volume of Greenland ice sheet has accelerated at an initial rate of -53.8 ± 4.5 km3/yr and an acceleration of -2.2 ± 0.3 km3/yr2 in recent 30 years. We also find that the transformation of the North Atlantic Oscillation has significant impacts on the surface elevation changes of the Greenland ice sheet. In addition, the dataset can be used as fundamental data for assessing the mass balance of Greenland ice sheet and its contribution to global sea level rise and studying the response process and mechanism of Greenland ice sheet to climate change.

Glacier coverage data  on the Tibetan Plateau  in 1970s (TPG1976, Version 1.0)

The Tibetan Plateau Glacial Data -TPG1976 is a glacial coverage data on the Tibetan Plateau in the 1970s. It was generated by manual interpretation from Landsat MSS multispectral image data. The temporal coverage was mainly from 1972 to 1979 by 60 m spatial resolution. It involved 205 scenes of Landsat MSS/TM. There were 189 scenes(92% coverage on TP)in 1972-79,including 116 scenes in 1976/77 (61% of all the collected satellite data).As high quality of MSS data is not accessible due to cloud and snow effects in the South-east Tibetan Plateau, earlier Landsat TM data was collected for usage, including 14 scenes of 1980s(1981,1986-89,which covers 6.5% of TP) and 2 scenes in 1994(by 1.5% coverage on TP).Among all satellite data,77% was collected in winter with the minimum effects of cloud and seasonal snow. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 1976. Glacier outlines were digitized on-screen manually from the 1976 image mosaic, relying on false-colour image composites (MSS: red, green and blue (RGB) represented by bands 321; TM: RGB by bands 543), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. The delineated glacier outlines were compared with band-ratio results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG1976. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG1976 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 6.4% due to the 60 m spatial resolution images.

Glacier coverage data on the Tibetan Plateau in 2013 (TPG2013, Version1.0)

The Tibetan Plateau Glacier Data –TPG2013 is a glacial coverage data on the Tibetan Plateau around 2013. 128 Landsat 8 Operational Land Imager (OLI) images were selected with 30-m spatial resolution, for comparability with previous and current glacier inventories. Besides, about 20 images acquired in 2014 were used to complete the full coverage of the TP. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 2013. Glacier outlines were digitized on-screen manually from the 2013 image mosaic, relying on false-colour image composites (RGB by bands 654), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. [To minimize the effects of snow or cloud cover on glacierized areas, high-resolution (30 m spatial resolution and 4-day repetition cycle) images were also used for reference in glacier delineation from the Chinese satellites HJ-1A and HJ-1B, which were launched on Sep.6th 2008. Both carried as payload two 4-band CCD cameras with swath width 700 km (360 km per camera). All HJ-1A/1B data in 2012, 2013 and 2014 (65 scenes, Fig.S1, Table S1) were from China Centre for Resources Satellite Data and Application (CRESDA; http://www.cresda.com/n16/n92006/n92066/n98627/index.html). Each scene was orthorectified with respect to the 30m-resolution digital elevation model (DEM) of the Shuttle Radar Topography Mission (SRTM) and Landsat images.] The delineated glacier outlines were compared with band-ratio (e.g. TM3/TM5) results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. Topographic maps from the 1970s and all available satellite images (including Google EarthTM imagery and HJ-1A/1B satellite data) were used as base reference data. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG2013. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG2013 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 3.9%.

Surface elevation time series of Antarctic ice sheet  (2002-2019)

The surface elevation of the ice sheet is very sensitive to climate change, so the elevation change of the ice sheet is considered as an important variable to evaluate climate change. The time series of long-term ice sheet surface elevation change has become a fundamental data for understanding climate change. The longest time series of ice sheet surface elevation can be established by combining the observation records of radar satellite altimetry missions. However, the previous methods for correcting the intermission bias still have error residue when cross-calibrating different missions. Therefore,we modify the commonly used plane-fitting least-squares regression model by restricting the correction of intermission bias and the ascending–descending bias at the same time to ensure the self-consistency and coherence of surface elevation time series across different missions. Based on this method, we use Envisat and CryoSat-2 data to construct the time series of Antarctic ice sheet elevation change from 2002 to 2019. The time series is the monthly grid data, and the spatial grid resolution is 5 km×5 km. Using airborne and satellite laser altimetry data to evaluate the results, it is found that compared with the traditional method, this method can improve the accuracy of intermission bias correction by 40%. Using the merged elevation time series, combining with firn densification-modeled volume changes due to surface processes, we find that ice dynamic processes make the ice sheet along the Amundsen Sea sector the largest volume loss of the Antarctic ice sheet. The surface processes dominate the volume changes in Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2.

Snow depth product over Antarctic sea ice from 2002 to 2020

Snow over sea ice controls the energy budgets, affects the sea ice growth/melting, and thus has essential climatic effects. Snow depth, one of the fundamental properties of snow cover, is essential for understanding of the rapid change in Antarctic climate and for sea ice thickness estimation. Passive microwave radiometer can be used for basin-scale snow depth estimation in daily scale, however, previous published methods applied for Antarctic snow depth shows clear underestimation, which limits their further application. Here, we construct a new and robust linear regression equation for snow depth retrieval using microwave radiometers by including lower frequencies, and we produce the snow depth product over Antarctic sea ice from 2002 to 2020 from AMSR-E, AMSR-2, SSMIS based on this method. A regression analysis using 7 years of Operation IceBridge (OIB) airborne snow depth measurements shows that the gradient ratio (GR) calculated using brightness temperatures in vertical polarized 37 and 19 GHz, i.e., GR(37/7), is the optimal one for deriving Antarctic snow depth with an root mean square deviation (RMSD) of 8.92 cm and a correlation coefficient of -0.64, the related equation coefficients are then derived. GR(37/19) is used to retrieve snow depth from SSMIS data to fill the observation gaps between AMSR-E and AMSR-2, and the estimated snow depth is corrected for the consistence with these from AMSR-E/2. An averaged uncertainty of 3.81 cm is found based on a Gaussian error propagation, which accounts for 12% of the estimated mean snow depth. The evaluation of proposed method with in-situ measurements from Australian Antarctic Data Centre shows that the proposed method outperforms the previous available method, with a mean difference of 5.64 cm and an RMSD of 13.79 cm, comparing to -14.47 cm and 19.49 cm. Comparison to shipborne observations from Antarctic Sea Ice Processes and Climate indicates that the proposed method shows slight better performance than previous method (RMSDs of 16.85 cm and 17.61 cm, respectively); and comparable performances in growth and melting seasons suggests that the proposed method can still be used in the melting season. We generate a complete snow depth product over Antarctic sea ice from 2002 to 2020 in daily scale, and negative trends can be found in all sea sectors and seasons. This dataset can be further used in the reanalysis data evaluation, sea ice thickness estimation, climate model and other aspects.