Hydrological data set of surface process and environment observation network in alpine region of China (2019)

Based on the long-term observation data of the field stations in the alpine network and the overseas stations in the pan third polar region, a series of data sets of meteorological, hydrological and ecological elements in the pan third polar region are established; through the intensive observation and sample plot and sample point verification in key areas, the inversion of meteorological elements, lake water and water quality, aboveground vegetation biomass, glacier and frozen soil change and other data products are completed; based on the Internet of things, the data products are retrieved Network technology, research and establish meteorological, hydrological, ecological data management platform of multi station networking, to achieve real-time data acquisition and remote control and sharing. The hydrological data set of the surface process and environment observation network in China's alpine regions in 2019 mainly collects the measured hydrological (runoff, water level, water temperature, etc.) data at six stations, including Southeast Tibet station, Zhufeng station, Yulong Snow Mountain station, Namco station, Ali station and Tianshan station. Southeast Tibet station: flow data, including 4 times of using M9 to measure flow in 2019, including average velocity, flow and maximum water depth; relative water level data is measured by hobo pressure water level meter, including daily average relative water level and water temperature data in 2019. Namco station: discharge data, including the data measured by domestic ls-1206b hand-held current meter for 4 times in 2019, including river width and flow data. The water level data is measured by hobo pressure water level meter, including the water pressure, water temperature and electricity of the original 1 hour in 2019. The relative water level can be calculated by water pressure; Everest station: rongbuhe river discharge, including river width and discharge data measured by domestic ls-1206b hand-held current meter 13 times from June to September 2019; Ali station: flow data: including 22 times of irregular measurement data by river anchor M9 in 2019, and relative water level data measured by hobo pressure water level meter, including hourly water level and water temperature data of the whole year in 2019; Tianshan station: water level data: including daily average water level of 3 points in 2019 Yulong Xueshan station: including mujiaqiao flow data from January to October in 2019

A Prolonged Artificial Nighttime-light Dataset of China (1984-2020)

Nighttime light remote sensing has been an increasingly important proxy for human activities including socioeconomics and energy consumption. Defense Meteorological Satellite Program-Operational Linescan System from 1992 to 2013 and Suomi National Polar-Orbiting Partnership-Visible Infrared Imaging Radiometer Suite since 2012 are the most widely used datasets. Despite urgent needs for long-term products and pilot explorations in synthesizing them, the publicly available long-term products are limited. We propose a Night-Time Light convolutional Long Short-Term Memory (NTLSTM) network, and apply the network to produce annual Prolonged Artificial Nighttime-light DAtaset (PANDA) in China from 1984 to 2020. Model assessments between modelled and original images show that on average the Root Mean Squared-Error (RMSE) reaches 0.73, the coefficient of determination (R2) reaches 0.95, and the linear slope is 0.99 at pixel level, indicating a high confidential level of the data quality of the generated product. In urban areas, the modelled results can well capture temporal trends in newly built-up areas but slightly underestimate the intensity within old urban cores. Socioeconomic indicators (built-up areas, Gross Domestic Product, population) correlates better with the PANDA than with previous products in the literature, indicating its better potential in finding different controls of nighttime-light variances in different phases. Besides, the PANDA delineates different urban expansion types, outperforms other products in representing road networks, and provides potential nighttime-light sceneries in early years. PANDA provides the opportunity to better bridge the cooperation between human activity observations and socioeconomic or environmental fields