Hydrological data of Kafinigan hydrological station in Amu Darya River Basin,Central Asia  (2020)

This data is from the hydrological station of kafinigan River, a tributary of the upper Amu Darya River. The station is jointly built by Urumqi Institute of desert meteorology of China Meteorological Administration, Institute of water energy and ecology of Tajik National Academy of Sciences and Tajik hydrometeorological Bureau. The data can be used for scientific research such as water resources assessment and water conservancy projects in Central Asia. Data period: November 3, 2019 to December 3, 2020. Data elements: Hourly velocity (M / s), hourly water level (m) and hourly rainfall (m). Site location: 37 ° 36 ′ 01 ″ n, 68 ° 08 ′ 01 ″ e, 420m 1、 300w-qx River velocity and water level observation instrument (1) Flow rate parameters: 1 power supply voltage 12 (9 ~ 27) V (DC) The working current is 120 (110 ~ 135) MA 3 working temperature (- 40 ~ 85) ℃ 4 measurement range (0.15 ~ 20) m / S The measurement accuracy is ± 0.02m/s The resolution is less than 1 mm The detection range is less than 0.1 ~ 50 m 8 installation height 0.15 ~ 25 m 9 sampling frequency < 20sps (2) Water level parameters: 1 measuring range: 0.5 ~ 20 m The measurement accuracy is ± 3 mm The resolution is less than 1 mm The repeatability was ± 1 mm 2、 SL3-1 tipping bucket rain sensor 1. Water bearing diameter Φ 200mm 2. The measured precipitation intensity is less than 4mm / min 3. Minimum precipitation of 0.1 mm 4. The maximum allowable error is ± 4% mm 3、 Flow velocity, frequency of data acquisition of the observation instrument: the sensor measures the flow velocity and water level data every 5S 4、 Calculation of hourly average velocity: the hourly average velocity and water level data are obtained from the average of all the velocity and water level data measured every 5S within one hour 5、 Description of a large number of values of 0 in water level data: the value of 0 in water level data is caused by power failure and restart of sensor due to insufficient power supply. The first data of initial start-up is 0, resulting in the hourly average value of 0. After the power supply transformation on July 26, 2020, the data returned to normal. At the end of September 2020, the power supply began to be insufficient. After the secondary power supply transformation on December 25, 2020, the data returned to normal 6、 Description of water level monitoring (such as line 7358, 2020 / 11 / 3, 16:00, maximum water level 6.7m, minimum water level 0m, how to explain? In addition, the maximum value of the highest water level is 6.7m, which appears many times in the data. It seems that 6.7m is the limit value of the monitoring data. Is this the case? ): 6.7m is the height from the initial sensor to the bottom of the river bed. The appearance of 6.7m is the abnormal data when the sensor is just started. The sensor is restarted due to the power failure caused by the insufficient power supply of the equipment. This abnormal value appears in the initial start-up. After the power supply transformation on December 25, 2020, the data returns to normal

Central Asia Reanalysis dataset (1979-2017)

The Central Asia Reanalysis (CAR) dataset is generated based on the Weather Research and Forecast (WRF) model version 4.1.2 and WRF Data Assimilation (WRFDA) Version 4.1.2. Variables include temperature,, pressure, wind speed, precipitation and radiation. The reanalysis is established through cyclic assimilation, which performs data assimilation every 6 hours by 3DVAR. The assimilated data include conventional atmospheric observation and satellite radiation data. The main source of conventional data is Global Teleconnection System (GTS), including surface station, automatic station, radiosonde and aircraft report, and the observation elements include temperature, air pressure, wind speed and humidity. Satellite observations include retrievals and radiation data, The retrievals are mainly atmospheric motion vectors from polar orbiting meteorological satellites (NOAA-18, NOAA-19, MetOP-A and MetOP-B) and resampled to a horizontal resolution of 54km; the radiation data includes microwave radiation from MSU, AMSU and MHS and HIRS infrared radiation data. The simulation applies nesting with a horizontal resolution of 27km and 9km respectively, a total of 38 layers in the vertical direction and a top of the model layer of 10hPa. The lateral boundary conditions of the model are provided by ERA-Interim every 6 hours. The physical schemes used in the model are Thompson microphysics scheme, CAM radiation scheme, MYJ boundary layer scheme, Grell convection scheme and Noah land surface model. The data covers five countries in Central Asia, including Kazakhstan, Tajikistan, Kyrgyzstan, Turkmenistan and Uzbekistan, as well as lakes in Central Asia, such as Caspian Sea, Aral Sea, Balkash lake and Isaac lake, which can be used for the study of climate, ecology and hydrology in the region. Compared with gauge-based precipitation in Central Asia, the simulation by CAR shows similar performance with MSWEP ( a merged product) and outperforms ERA5 and ERA-Interim.