Glacier melt runoff data of the Qinghai Tibet Plateau (2019-2021)

Glacier is the supply water source of rivers in the western mountainous area, and it is one of the most basic elements for people to survive and develop industry, agriculture and animal husbandry in the western region. Glaciers are not only valuable fresh water resources, but also the source of serious natural disasters in mountainous areas, such as sudden ice lake outburst flood, glacier debris flow and ice avalanche. Glacier hydrological monitoring is the basis for studying the characteristics of glacier melt water, the replenishment of glacier melt water to rivers, the relationship between glacier surface ablation and runoff, the process of ice runoff and confluence, and the calculation and prediction of floods and debris flows induced by glacier and seasonal snow melt water. Glacial hydrology refers to the water and heat conditions of glacial covered basins (i.e. glacial action areas), that is, the water and heat exchange between glaciers and their surrounding environment, the physical process of water accumulation and flow on the surface, inside and bottom of glaciers, the water balance of glaciers, the replenishment of glacial melt water to rivers, and the impact of water bodies in cold regions on climate change. At present, hydrological monitoring stations are mainly established at the outlet of the river basin to carry out field monitoring《 Glacial water resources of China (1991), hydrology of cold regions of China (2000) and glacial Hydrology (2001) summarize the early studies on glacial hydrology. China has carried out glacier hydrological monitoring on more than 20 glaciers in Tianshan, Karakorum, West Kunlun, Qilian, Tanggula, Nianqing Tanggula, gangrigab, Hengduan and Himalayas. This data set is the monthly runoff data of representative glaciers.

Disturbance disaster data of 1:250000 major projects in Qinghai Tibet Plateau (1985-2020)

This data is the disturbance disaster data of 1:250000 major projects in the Qinghai Tibet Plateau. For the scope of disaster interpretation, line engineering (national highway, high-speed, railway and Power Grid Engineering) and hydropower engineering are bounded by the first watershed on both sides of the project; Mine, oilfield and port projects are bounded by 1km away from the project. Engineering disturbance disasters can be divided into two categories: ① landslide, collapse and debris flow disasters induced by engineering construction; ② For natural disasters that may affect the project, it is stipulated that all natural disasters within the above interpretation scope belong to category ② engineering disturbance disasters. The data includes the location, length, width, height difference, distribution elevation, genetic type, inducing factors, occurrence time, lithology and other elements of landslide, disaster related projects and project construction years. Based on Google Earth image and 1:500000 geological diagram, 6176 disaster points were interpreted; Google Earth is mainly used for disturbance disaster interpretation, and combined with field investigation to verify the interpretation results, ArcGIS is used to generate disaster distribution map; The data comes from Google Earth high-resolution images, with high accuracy of original data. In the process of generating disaster files, the interpretation specifications are strictly followed, and special personnel are assigned to review, so the data quality is reliable; Based on the collected data, the disaster risk analysis of the study area can be carried out to provide theoretical guidance for the smooth operation of the built projects and the construction of the line projects not built / under construction.

Asian precipitation dataset with high quality and spatiotemporal resolution (AIMERG, 0.1°, half-hourly, 2000-2015)

Precipitation estimates with fine quality and spatio-temporal resolutions play significant roles in understanding the global and regional cycles of water, carbon, and energy. Satellite-based precipitation products are capable of detecting spatial patterns and temporal variations of precipitation at fine resolutions, which is particularly useful over poorly gauged regions. However, satellite-based precipitation products are the indirect estimates of precipitation, inherently containing regional and seasonal systematic biases and random errors. Focusing on the potential drawbacks in generating Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) and its recently updated retrospective IMERG in the Tropical Rainfall Measuring Mission (TRMM) era (finished in July 2019), which were only calibrated at a monthly scale using ground observations, Global Precipitation Climatology Centre (GPCC, 1.0◦/monthly), we aim to propose a new calibration algorithm for IMERG at a daily scale and to provide a new AIMERG precipitation dataset (0.1◦/half-hourly, 2000–2015, Asia) with better quality, calibrated by Asian Precipitation – Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE, 0.25◦/daily) at the daily scale for the Asian applications. Considering the advantages from both satellite-based precipitation estimates and the ground observations, AIMERG performs better than IMERG at different spatio-temporal scales, in terms of both systematic biases and random errors, over mainland China.

Geodetic Glacier mass  changes  in Naimo'Nanyi area  in 1974-2000 and 2000-2013 (V1.0)

The data involved two periods of geodetic glacier mass storage change of Naimona’Nyi glaciers in the western of Himalaya from 1974-2013 (unit: m w.e. a-1). It is stored in the ESRI vector polygon format. The data sets are composed of two periods of glacier surface elevation difference between 1974-2000 and 2000-2013, i.e. DHSRTM2000-DEM1974(DH2000-1974)、DHTanDEM2013-SRTM2000(DH2013-2000). DH2000-1974 was surface elevation change between SRTM2000 and DEM1974, i.e. the earlier historical DEM (DEM1974, spatial resolution 25m) was derived from 1:50,000 topographic maps in October 1974(DEM1974,spatial resolution 25m). The uncertainty in the ice free areas of DH2000-1974 was ±0.13 m a-1. The surface elevation difference between 2000-2013 (DH2000-2013, by DinSAR techniques from SRTM DEM2000 and TSX/TDX data on Oct.17th in 2013) The uncertainty in the ice free areas of DH2013-2000 was ±0.04 m a-1. Glacier-averaged annual mass balance change (m w.e.a-1) was averaged annually for each glacier, which was calculated by DH2000-1974/DH2013-2000, glacier coverage area and ice density of 850 ± 60 kg m−3. The attribute data includes Glacier area by Shape_Area (m2), EC74_00, EC00_13, i.e. Glacier-averaged surface elevation change in 1974-2000 and 2000-2013(m a-1), MB74_00, MB00_13 i.e. Glacier-averaged annual mass balance in 1974-2000 and 2000-2013 (m w.e.a-1), and MC74_00, MC00_13, Glacier-averaged annual mass change in 1974-2000 and 2000-2013 (m3 w.e.a-1), Uncerty_MB, is the uncertainty of glacier-averaged annual mass balance(m w.e. a-1), Uncerty_MC, is the Maximum uncertainty of glacier-averaged annual mass change(m3 w.e. a-1). The data sets could be used for glacier change, hydrological and climate change studies in the Himalayas and High Mountain Asia.