English | 中文
全球雪深数据集采用被动微波遥感反演方法制作,数据覆盖时间从1980年到2018年,时间分辨率为逐日,覆盖范围为全球,空间分辨率为25,067.53 m。遥感反演方法采用动态亮温梯度算法,算法考虑积雪特性在时空和空间上的变化,建立了不同频率亮度温度差与实测雪深在空间和季节上的动态关系。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在雪深提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明全球雪深数据相对偏差在30%以内。数据据每一天存放一个txt文件,每个文件由文件头(投影方式)和1383*586的雪深矩阵组成,每个雪深代表一个25,067.53m*25,067.53m的格网。该数据的投影方式为EASE-Grid,下面是每个文件的文件头,将其加到每个文件的前面可以将数据在arcgis中显示。 ncols 1383 // 数据矩阵共1383列 nrows 586 // 数据矩阵共586 xllcorner -17334193.54 //矩阵x方向左下角网格的角落点坐标 yllcorner -7344787.75 //矩阵y方向轴左下角网格的角落点坐标 cellsize 25,067.53 //每个网格的大小 NODATA_value -1 //缺省值
全球气候变暖及人类活动导致青藏高原大面积冻土退化、热融滑塌等问题,严重影响了多年冻土区工程建设和生态环境。以青藏高原黑河流域俄博岭的冻土为研究区,基于高分辨率卫星影像,利用机器学习面向对象分类技术提取研究区内热融滑塌信息,结果表明2009年至2019年研究区热融滑塌数量从12条增至16条,总面积由14718.9平方米增至28579.5平方米,增加了近两倍。高空间分辨率遥感与面向对象分类方法相结合在冻土热融滑塌监测中具有广阔的应用前景。
湖冰物候是描述湖冰覆盖的季节性循环特征,湖冰物候的变化是碳、水和能量过程研究中的重要内容,也是气候变化的敏感因子之一。本数据集是基于被动微波反演的湖冰物候,包含青藏高原与北半球高纬度地区200个湖泊2002-2018年的湖冰物候(含湖泊开始冻结日期、完全冻结日期、开始融化日期、完全融化日期),部分湖泊可以延伸至1978年。该数据与同时期MODIS监测结果验证表明二者的判读误差为2-4天。用户可利用此数据开展北半球气候变化研究。
该数据集为全球植被生产力数据,包含总初级生产力(GPP)和净初级生产力(NPP)两部分,由耦合模式比较计划第6阶段(CMIP6)中CNRM-CM6-1模式在Historical情景下模拟得到。数据时间范围为1850-2014年,时间分辨率为月,空间分辨率约为1.406°×1.389°。模拟数据详细说明可见链接http://www.umr-cnrm.fr/cmip6/spip.php?article11。
本数据是通过建立长江黄河源WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,以GAME-TIBET数据作为验证数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。数据是基于WEB-DHM分布式水文模型,以气温、降水、气温等(源自itp-forcing和CMA)为输入数据,以GLASS、MODIA、AVHRR为植被数据,SOILGRID及FAO为土壤参数建立起的模型,并通过对径流、土壤温湿度的率定与验证获得的1998-2017年长江黄河源5公里逐月格网径流与蒸发。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
雪冰中可溶有机碳(DOC)能够有效的吸收紫外和近紫外波段的太阳辐射,也是导致雪冰消融增强的重要因素之一。通过连续阿勒泰地区2016年11月至2017年4月的积雪样品,利用仪器进行实验分析测试获得阿勒泰地区库威站积雪DOC、总氮TN以及黑碳BC的数据,时间分辨率为周,消融期为每日。 1. 单位: DOC和TN的单位μg g-1 (ppm), BC的单位ng g-1(ppb),MAC的单位是 m2 g-1
冻土是指温度低于或等于0℃且含有冰的土体或岩体,它对温度特别敏感,其物理力学性质会随温度的变化而产生显著变化。冻土的冻胀变形和融化沉降变形是最为常见的冻土灾害,它们的发生主要是因冻土工程活动使冻土固有的温度发生变化而引起的,所以保护冻土主要也是保护冻土温度,让其维持在工程活动之前最为接近的状态。获取冻土地温的主要方法是埋设测温电缆,通过CR3000的数据采集功能获得测温电缆不同时间的阻值变化,利用标定系数和电阻值的对应关系计算出温度值。依据冻土对温度的敏感特征,地温的变化情况,能够反应气候的变化情况,也能够结合其他要素分析出人类活动对冻土的稳定性的影响机理及程度,从而来指导后期工程活动中的冻土保护措施的升级改造等。
DEM是数字高程模型的英文简称(Digital Elevation Model)是流域地形、地物识别的重要原始资料。DEM 的原理是将流域划分为m 行n列的四边形(CELL),计算每个四边形的平均高程,然后以二维矩阵的方式存储高程。由于DEM 数据能够反映一定分辨率的局部地形特征,因此通过DEM 可提取大量的地表形态信息,这些信息包含流域网格单元的坡度、坡向以及单元格之间的关系等。同时根据一定的算法可以确定地表水流路径、河流网络和流域的边界。因此从DEM 提取流域特征,一个良好的流域结构模式是设计算法的前提和关键。 高程数据图是根据中国1:25万等高线和高程点形成的1km数据,包括DEM、山影(hillshade)、坡度(Slope)、坡向(Aspect)图 数据集投影: 两种投影方式 : 正轴割圆锥等面积投影 Albers Conical Equal Area(105、25、47) 大地坐标WGS84坐标系
本数据集根据最新发布的NOAA全球模拟和绘图项目(GIMMS,Global Inventory Monitoring and Modeling System)长序列(1981-2013)均一化植被指数产品,版本号3g,先将NDVI数据产品从1/12度空间分辨率重采样到0.5度,然后对每年的时间序列采用double-logistic方法进行平滑,并计算平滑后的曲率,选取春季曲率最大值作为植被的春季返青期,该数据可分析泛北极植被春季物候的时空特征。
该数据集包含了2018年8月31日至2018年12月24日青海湖流域地表过程综合观测网高寒草甸草原混合草原超级站气象要素梯度观测系统数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧10m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度) 、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
该数据集包含了2018年1月1日至2018年12月31日的黑河流域地表过程综合观测网下游混合林站涡动相关仪观测数据。站点位于内蒙古额济纳旗四道桥,下垫面是胡杨与柽柳。观测点的经纬度是101.1335E, 41.9903N,海拔874 m。涡动相关仪的架高22m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。2月7日-11日由于供电问题,导致数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
植被调查数据是研究生态系统结构与功能必不可少的数据。藏北地区蕴含广袤的草地生态系统,主要包括高寒草甸、高寒草地、以及高寒荒漠化的草地。由于独特的地理位置以及高海拔缺氧的环境条件,在藏北高原的群落调查数据较为稀少。本课题组基于前期工作的积累,在2017年生长季对整个藏北高原15个县域开展了较为全面的植被调查。本数据集包括藏北样带上从那曲到日土县23个采样点的围栏内外的生物量数据。本数据集可用于生产力的空间分析与模型的校准工作。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件