黑河流域卫星像元尺度地表蒸散发相对真值数据集(多 站 点 观 测 - 像 元 尺 度 ) Version 1.0

地表蒸散发(Evapotranspiration,ET)是地球系统中水循环和能量传输的重要环节,地表蒸散发的准确获取有助于全球气候变化、作物估产、干旱监测等研究,并且对区域乃至全球水资源规划管理具有重要的指导意义。随着遥感技术的发展,遥感估算地表蒸散发已成为获取区域与全球蒸散发的一个有效途径,目前多种中低分辨率地表蒸散发产品已业务化生产和发布,但遥感估算地表蒸散发模型在模型机理、输入数据、参数化方案等方面仍存在许多不确定性,因此,需要通过真实性检验来定量评价遥感估算地表蒸散发产品的精度。但在真实性检验过程中,存在地表蒸散发遥感估算值与站点观测值的空间尺度不匹配问题,因此卫星像元尺度地表蒸散发的相对真值获取是关键。 以黑河流域综合观测网2012年6-9月中游“非均匀下垫面地表蒸散发的多尺度观测试验”中通量观测矩阵的4(村庄)、5(玉米)、6(玉米)、7(玉米)、8(玉米)、11(玉米)、12(玉米)、13(玉米)、14(玉米)、15(玉米)、17(果园)号站和2014-2015年1-12月下游绿洲胡杨林站(胡杨林)、混合林站(柽柳/胡杨)、裸地站(裸地)、农田站(甜瓜)、四道桥站(柽柳)观测数据(自动气象站、涡动相关仪、大孔径闪烁仪等)为基础,以高分辨率遥感数据(地表温度、植被指数、净辐射等)作为辅助数据,分布图见图1,考虑地表异质性对ET尺度扩展的影响,通过直接检验和交叉检验对6种尺度扩展方法(面积权重法、基于Priestley-Taylor公式的尺度扩展方法、不等权重面到面回归克里格方法、人工神经网络、随机森林、深度信念网络)进行比较和分析,最终优选一种综合的方法(在下垫面均匀时,采用面积权重法;在下垫面中度非均匀时,采用不等权重面到面回归克里格方法;下垫面高度非均匀时采用随机森林方法)分别获取中游和下游通量观测矩阵区域MODIS卫星过境瞬时/日的地表蒸散发像元尺度相对真值(空间分辨率为1km),并通过与大孔径闪烁仪观测值(参考值)进行验证分析,结果表明:该数据集整体精度良好,中游卫星像元尺度相对真值瞬时和逐日的平均绝对百分误差(MAPE)分别为2.6%和4.5%,下游卫星像元尺度相对真值瞬时和逐日的MAPE分别为9.7%和12.7%,可以用来验证其它遥感产品。该像元地表蒸散发数据既能解决遥感估算值与站点观测值的空间不匹配问题,又能表征验证过程的不确定性。所有站点信息和尺度扩展方法请参考Li et al. (2018)和 Liu et al. (2016),观测数据处理请参考Liu et al. (2016)。

黑河流域区域尺度地表蒸散发相对真值数据集(2012-2016年)ETMap Version 1.0

地表蒸散发(Evapotranspiration,ET)是连接着陆地能量平衡、水循环以及碳循环等的重要变量,地表蒸散发的准确获取有助于全球气候变化、作物估产、干旱监测等研究,并且对区域与全球的水资源规划管理具有重要的意义。地表蒸散发的获取方法主要包括地面观测、遥感估算、模式模拟与同化等。地面观测可以获得高精度的地表蒸散发数据,但观测站点的空间代表性十分有限;遥感估算、模式模拟与同化方法可以获得空间连续的地表蒸散发,但存在精度与时空分布格局合理性的验证问题。因此,本研究充分利用众多的高精度站点观测数据,结合多源遥感信息,将地面站点观测尺度扩展至区域上,获得高精度、时空分布连续的地表蒸散发量。 基于近年来开展的“黑河综合遥感联合试验”(WATER)、“黑河流域生态-水文过程综合遥感观测联合试验”(HiWATER)、所积累的站点观测数据(自动气象站、涡动相关仪、大孔径闪烁仪等),共选用36个站点(65个站年,分布图见图1),结合多源遥感数据(土地覆盖与植被类型图,叶面积指数、地表温度等)和大气驱动数据等,运用五种机器学习方法(回归树、随机森林、人工神经网络、支持向量机、深度信念网络)分别构建了不同的地表蒸散发尺度扩展模型,对各尺度扩展模型进行了全面的对比分析,结果表明:相比于其他四种方法,随机森林方法更适合于黑河流域由站点到区域的地表蒸散发尺度扩展研究。基于优选出的随机森林尺度扩展模型,以遥感及大气驱动数据作为输入,生产了2012~2016年生长季(5~9月)黑河流域地表蒸散发时空分布图(ETMap,时间分辨率为逐日,空间分辨率为1km)。以LAS观测值为真值进行验证,结果表明:ETMap整体精度良好,上游 (LAS1)、中游 (LAS2-LAS5)和下游 (LAS6 - LAS8)的RMSE (MAPE)分别为0.65 mm/day(18.86%)、0.99 mm/day (19.13%)和0.91 mm/day (22.82%)。总之,ETMap是基于站点观测数据运用随机森林算法进行尺度扩展得到的精度较高的黑河流域地表蒸散发产品。所有站点信息和尺度扩展方法请参考Xu et al. (2018),观测数据处理请参考Liu et al. (2018)。