English | 中文
本数据集包含自1951年1月至2006年12月,青藏高原地区历年各季度和历年各月份的温度距平序列。依照气候距平法(CAM),基于《中国均一化历史气温数据集(1951-2004)1.0版》与2005-2006逐日平均气温资料,对青藏高原及其邻近区域共123个站点的逐月平均气温网格化,进而以面积加权法建立了高原1951-2006年逐月平均气温距平序列。其中,为最大限度地利用观测资料,着重探讨了利用参考站订正短序列气温资料气候标准值的方法。参考文献:任雨,张雪芹,彭莉莉.青藏高原1951-2006年气温距平序列的建立与分析.高原气象,2010. 《中国均一化历史气温数据集(1951-2004)1.0版》与2005-2006逐日平均气温资料,符合相关国家标准。 年各月温度距平数据表共有五个字段 字段1:年 字段2:月份 字段3:网格数 参加计算的网格数 字段4:站点数 参加计算的站点数 字段5:月温度距平 单位 ℃ 历年及各季温度距平数据表共有五个字段 字段1:年 字段2:季度 字段3:网格数 参加计算的网格数 字段4:站点数 解释:参加计算的站点数 字段5:温距平 ℃ 其中,季度字段中 1. 如果为空值,表示为年温度距平 2. DJF:冬季(上年12月至当年2月)温度距平值 ℃ 3. MAM:春季(3-5月)温度距平值 ℃ 4. JJA:夏季(6-8月)温度距平值 ℃ 5. SON:秋季(9-11月)温度距平值 ℃ 数据精度:月均温距平到小数点后三位,年均温与季均温距平到小数点后两位。
土壤是岩石经过风化作用形成的不同大小的矿物颗粒。土壤不仅仅为作物提供养分和水分,同时也对各种养分有转化作用。此外,土壤还有自净功能,可以改良有机物含量、土壤温湿度、pH值、阴阳离子。而土壤污染导致几个方面的环境问题:工业污水, .酸雨, 尾气排放, 堆积物, 农业污染。土地受到污染后,含重金属浓度较高的污染表土容易在风力和水力的作用下分别进入到大气和水体中,导致大气污染、地表水污染、地下水污染和生态系统退化等其他次生生态环境问题。该数据集来源于联合国粮农组织(FAO)和维也纳国际应用系统研究所(IIASA)所构建的世界土壤数据库(Harmonized World Soil Database version 1.1 )(HWSD),该数据为建模者提供模型输入参数,同时为生态农业分区,粮食安全和气候变化等研究提供依据。
数据包含青藏高原地区的土壤有机质数据,空间分辨率为1km*1km,时间覆盖范围为1979-1985年。数据来源是基于第二次土壤普查数据生成的土壤碳含量。土壤有机质主要来源于植物、动物及微生物残体,其中高等植物为主要来源。原始土壤中最早出现在母质中的有机体是微生物。随着生物的进化和成土过程的发展,动物、植物残体及其分泌物就成为土壤有机质的基本来源。数据对于分析青藏高原的生态环境以及衡量区域土壤特征具有重要意义。
泛第三极地区地震活动强烈,其地震活动的动力来源于印度板块、阿拉伯板块与欧亚板块的俯冲碰撞。在泛第三极地区(北纬0-56度,东经43-139度)1960年以来发生M≥6级地震3809次,其中M≥8级地震59次,M=7.0-7.9级地震689次, M=6.0-6.9级地震3061次。地震主要发生在印度板块与欧亚板块的碰撞边界印缅山脉、喜马拉雅山脉 、苏来曼山脉的山麓地区,以及阿拉伯板块与欧亚板块碰撞的扎格罗斯山脉地区。
该数据集记录了中亚五国1991-2017年总的社会人口统计数据。其中人口指标包括年终人口数量、预计人口寿命、总出生率(1000人)、总死亡率(1000人)、婴儿死亡率、母亲死亡率、总的结婚率、总的离婚率、所有人流的迁移差额、医疗机构的数量、医院床位数(千)、学龄前机构的数量(个)、幼儿园上学学生数量(千)、中学数量、中学生数量(千)、大学数量、大学生数量、高等学校数量、高等学校学生数。数据来源中亚五国统计年鉴。
光合有效辐射吸收系数光合有效辐射分量是重要的生物物理参数,是生态系统功能模型、作物生长模型、净初级生产力模型、大气模型、生物地球化学模型、生态模型等的重要陆地特征参量,是估算植被生物量的理想参数。 数据集包含青藏高原地区的光合有效辐射吸收系数数据,空间分辨率为500m,时间分辨率为8d,时间覆盖范围为2000年、2005年、2010年、2015年。数据来源为NASA网站MODIS LAI/FPAR产品数据MOD15A2H(C6)。 数据对于分析青藏高原的植被生态环境有重要意义。
中亚地区2017年输沙势数据集,为tif格式。其空间范围涵盖里海在内的中亚五国地区,包括乌兹别克斯坦、哈萨克斯坦、土库曼斯坦、塔吉克斯坦和吉尔吉斯坦。此输沙势为绝对输势,即各个方向的输沙通量的综合,不考虑输沙势的方向。该数据由GLDAS全球三小时同化数据提取计算获得。时间分辨率为月,空间分辨率为0.25°,时间范围为2017年。该数据可以作为沙尘传输模型的重要参数输入,也可用于评估中亚五国沙通量的总体分布情况。该数据集可作为风沙灾害评估的重要参考数据。
采用实地调查的方法,收集了青藏高原藏北那曲、东部若尔盖高原、风火山2015-2017年植被地上地下生物量及土壤碳氮数据,并对数据进行整理和初步分析。数据集主要包括不同增温梯度、不同海拔梯度(亚高山草甸、高山草甸、高山灌丛草甸)、不同水分梯度(沼泽湿地、退化沼泽、沼泽草甸、湿草甸、干草甸、退化草甸)和不同沙化程度(轻度沙化、中度沙化、重度沙化、完全沙化)下的高寒地区植被地上和地下生物量以及土壤碳含量。综合分析了以上不同梯度下植被生物量和土壤碳氮含量的差异和变化趋势。该数据集为了解及合理利用草地资源提供理论依据,也为探讨全球气候变化背景下高寒草地生产力预测提供有力支持。
径流是大气降水形成的,并通过流域内不同路径进入河流、湖泊或海洋的水流。习惯上也表示一定时段内通过河流某一断面的水量,即径流量。径流数据在水文水资源研究中占据着重要的地位,影响中亚当地社会经济的发展。本数据为中亚五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、乌兹别克斯坦和土库曼斯坦)流量,来源于中亚各国水文气象局。时间尺度为2015年的年均数据。本数据为项目提供了基础数据,便于分析中亚生态水文水资源的情况,为项目数据分析提供了数据支持。
本数据集为青藏高原土壤持久性有机污染物(POPs)的浓度数据,包括有机氯农药(OCPs)、多氯联苯(PCBs)、多溴联苯醚(PBDEs)和多环芳烃(PAHs)。本研究于 2007 年在 8 个土壤分区共采集土壤样品 40个。土壤样品主要在远离道路、居民区、农田等受人类活动影响的地区采集。采样方法是:利用不锈钢铲采集 0-5cm 表层土壤样品,在每个采样点 100 m2范围内各采集 5 个土壤样品(中心和每个角各一个样品)并混合成为一个样品。为减少可能的污染,所有土壤样品都用两层铝箔纸包裹,并放置于两层自封袋内密封保存。所有样品的分析工作均在中国科学院青藏高原环境变化与地表过程重点实验室完成。样品前处理步骤包括索式提取、硅胶-氧化铝柱净化、过GPC柱去除大分子杂质、浓缩定容等步骤。分析测试仪器为热电公司生产的气相色谱/离子阱质谱(Finnigan-TRACE GC/PolarisQ),分离OCPs和PCBs的色谱柱为CP-Sil 8CB毛细柱(50 m×0.25 mm×0.25 μm),分离PAHs的色谱柱为DB-5MS毛细柱(60 m×0.25 mm×0.25 μm)。实验过程中设置了实验流程空白。所有化合物实验室空白都没有检测到,这说明样品的分析过程中并没有造成污染。PAHs实验室样品的回收率在58-92%之间,OCPs的实验室样品的回收率在53-130%之间,样品浓度未使用回收率进行校正。
中亚地区植被覆盖度数据,数据格式为“.tif”的栅格数据集。范围包含了里海在内的中亚五国地区。该数据由MODIS-NDVI数据集,根据干旱区植被盖度与NDVI之间的经验关系计算得到。该数据空间分辨率为500m,时间分辨率为16天,时间范围为2017年1月1日至2017年12月18日,其坐标系统为大地坐标系统。该数据集可为中亚地区沙漠油气田与绿洲城镇风沙灾害评估提供数据基础。该数据由中国科学院新疆生态与地理研究所提供。
在众多反映气候环境变化的指标中,冰芯稳定同位素指标是冰芯记录研究中必不可少的参数,是恢复过去气候变化最可靠的手段和最有效的途径之一。冰芯积累量是冰川上降水量的直接记录,而且高分辨率冰芯记录保证了降水记录的连续性。因此,冰芯记录提供了一种恢复降水量变化的有效手段。从青藏高原钻取的冰芯同位素和积累量可用来重建温度和降水变化,是很好的气候环境记录。本数据集提供了青藏高原冰芯同位素和积累量数据,为研究青藏高原的气候变化提供数据支撑。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件