祁连山综合观测网:兰州大学寒旱区科学观测网络(连城站气象要素梯度观测系统-2018)

该数据集包含了2018年1月1日至2018年12月31日兰州大学寒旱区科学观测网络连城站气象要素梯度观测系统数据。站点位于甘肃永登连城吐鲁沟国家森林公园吐鲁坪,下垫面是森林。观测点的经纬度是102.737E,36.692N,海拔2903m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,共2层,朝向正北;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔2m处;红外温度计安装在2m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm和10cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_2m、WS_4m、WS_8m)(单位:米/秒)、风向(WD_2m、WD_4m、WD_8m)(单位:度)、空气温湿度(Ta_4m、Ta_8m和RH_4m、RH_8m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm)(单位:摄氏度) 、土壤水势(SWP_5cm,SWP_10cm)(单位:千帕)、土壤电导率(EC_5cm、EC_10cm)(单位:微西门子/厘米)、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);2018.5.30-7.6由于供电故障数据丢失;2018.1.1-5.30土壤热通量(5cm)传感器因鼠害断线,无有效数值;由于程序故障,空气湿度采集错误;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。

祁连山综合观测网:兰州大学寒旱区科学观测网络(临泽站气象要素梯度观测系统-2018)

该数据集包含了2018年1月1日至2018年12月31日兰州大学兰州大学寒旱区科学观测网络临泽站气象要素梯度观测系统数据。站点位于甘肃张掖临泽新华镇古寨村,下垫面是农田。观测点的经纬度是100.062E,39.238N,海拔1402m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,共2层,朝向正北;气压计安装在1m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下20cm和40cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_4m、WS_8m)(单位:米/秒)、风向(WD_4m、WD_8m)(单位:度)、空气温湿度(Ta_4m、Ta_8m和RH_4m、RH_8m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm)(单位:摄氏度) 、土壤水势(SWP_5cm,SWP_10cm)(单位:千帕)、土壤电导率(EC_5cm、EC_10cm)(单位:微西门子/厘米)、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);雨量筒程序错误,雨量数据无效;由于程序故障,空气湿度采集错误;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。

三江源及邻近区域国家标准气象站逐月气象数据(1957-2015)

三江源及区域国家标准气象站逐月气象数据,包含32个气象站,主要包括平均本站气压、极端最高本站气压、极端最高本站气压出现日、极端最低本站气压、极端最低本站气压出现日、平均气温、极端最高气温、极端最高气温出现日、极端最低气温、极端最低气温出现日、平均气温距平、平均最高气温、平均最低气温、日照时数、日照百分率、平均相对湿度、最小相对湿度、最小相对湿度出现日期、降水量、日降水量>=0.1mm日数、最大日降水量、最大日降水量出现日、降水距平百分率、平均风速、极大风速、极大风速之出现日、最大风速、极大风速之风向、最大风速之风向、最大风速之出现日26个变量。数据格式为txt,以站点ID命名,每个文件26列,各列数据的名称、单位以含义在SURF_CLI_CHN_MUL_MON_readme.txt文件中进行了说明。所包含的站点列表如下表: site_id lat lon elv name_cn 52754 37.33 100.13 8301.50 刚察 52833 36.92 98.48 7950.00 乌兰 52836 36.30 98.10 3191.10 都兰 52856 36.27 100.62 2835.00 恰卜恰 52866 36.72 101.75 2295.20 西宁 52868 36.03 101.43 2237.10 贵州 52908 35.22 93.08 4612.20 伍道梁 52943 35.58 99.98 3323.20 兴海 52955 35.58 100.75 8120.00 贵南 52974 35.52 102.02 2491.40 同仁 56004 34.22 92.43 4533.10 托托河 56018 32.90 95.30 4066.40 杂多 56021 34.13 95.78 4175.00 曲麻莱 56029 33.02 97.02 3681.20 玉树 56033 34.92 98.22 4272.30 玛多 56034 33.80 97.13 4415.40 清水河 56038 32.98 98.10 9200.00 石渠 56043 34.47 100.25 3719.00 果洛 56046 33.75 99.65 3967.50 达日 56065 34.73 101.60 8500.00 河南 56067 33.43 101.48 3628.50 久治 56074 34.00 102.08 3471.40 玛曲 56080 35.00 102.90 2910.00 合作 56106 31.88 93.78 4022.80 索县 56116 31.42 95.60 3873.10 丁青 56125 32.20 96.48 3643.70 囊谦 56128 31.22 96.60 3810.00 类乌齐 56137 31.15 97.17 3306.00 昌都 56151 32.93 100.75 8530.00 班玛 56152 32.28 100.33 8893.90 色达

中国植物功能型图(1 km)

植物功能型(PFT)是根据植物种的生态系统功能及其资源利用方式而对宠大的植物种进行的组合,每一种植物功能型共享相似的植物属性,是将植物种的多样性简化为植物功能和结构的多样性。植物功能型的概念受到生态学家特别是生态系统建模者的推崇。其基本假设是全球重要的生态系统动态可以通过有限的植物功能型表达和模拟。目前,植物功能型已被广泛用于生物地理模型、生物地球化学模型、陆面过程模型和全球动态植被模型,如美国国家大气研究中心(NCAR)的陆面过程模型已经将原来用土地覆盖信息变为应用植物功能型图(Bonan et al., 2002)。植物功能型已经被用于动态全球植被模型(DGVM)中,用以预测全球变化情景下生态系统结构与功能的变化。 参考全球植物功能型分类体系,根据模型需求,将土地覆盖类型与植物功能型合并考虑,确定该数据的分类体系下表。 1、植物功能型分类体系 1 Needleleaf evergreen tree, temperate 2 Needleleaf evergreen tree, boreal 3 Needleleaf deciduous tree 4 Broadleaf evergreen tree, tropical 5 Broadleaf evergreen tree, temperate 6 Broadleaf deciduous tree, tropical 7 Broadleaf deciduous tree, temperate 8 Broadleaf deciduous tree, boreal 9 Broadleaf evergreen shrub, temperate 10 Broadleaf deciduous shrub, temperate 11 Broadleaf deciduous shrub, boreal 12 C3 grass, arctic 13 C3 grass 14 C4 grass 15 Crop 16 Permanent wetlands 17 Urban and built-up lands 18 Snow and ice 19 Barren or sparsely vegetated lands 20 Bodies of water 2、制图方法 中国1公里植物功能型图是根据Bonan等(Bonan et al., 2002)提出的土地覆盖与植物功能型转换的气候规则,对MICLCover土地覆盖图(冉有华 等,2009;Ran et al., 2012)进行转换。MICLCover土地覆盖图是融合了2000年中国1:10万土地利用数据、中国植被图集(1:100万)的植物型、中国1:10万冰川分布图、中国1:100万沼泽湿地图和MODIS 2001年土地覆盖产品(MOD12Q1)的最新发布的土地覆盖数据,采用IGBP土地覆盖分类系统。评价显示,其可能是目前存在的全国1km尺度上精度最高的土地覆盖图。气候数据利用何杰等(2010)发展的1981-2008年的空间分辨率为0.1度、时间分辨率为3小时的中国大气驱动数据,是我国现存的在全国尺度上具有最高时空分辨率的气候数据,该数据融合了Princeton 陆面模式驱动数据(Sheffield et al., 2006)、GEWEX-SRB 辐射数据(Pinker et al., 2003)、TRMM 3B42 和APHRODITE 降水数据以及中国气象局740个气象台站的观测数据。根据RanYouhua等(2010)的评价结果,GLC2000在目前的全球土地覆盖数据集中,具有相对较高的精度,且其分类系统中没有混交林这一类,因此MICLCover土地覆盖图中的混交林利用GLC2000 (Bartholome and Belward, 2005; 徐文婷 等,2005)中的信息进行了替换。该数据可用于陆面过程模型等相关研究中。

长序列高时空分辨率月尺度温度和降水数据集(1951-2011)

本研究基于中国及周边国家共1153个气温站点和1202个降水站点数据,利用ANUSPLIN软件的局部薄盘光滑样条法进行插值,重建了1951−2011年中国月值气温和降水量的高空间分辨率0.025°(~2.5 km)格点数据集(简称LZU0025)。数据集的质量评估主要基于以下三个方面:(1)分析ANUSPLIN在日志文件中提供的一系列用于判别误差来源和插值质量的统计参数。结果表明在1951-2011年,表征最佳插值模型的广义交叉验证GCV(generalized cross validation)值较小,在气温插值时为1.06℃,在降水进行开方运算插值时为1.97mm1/2。(2)对比LZU0025格点值与预留的265个站点实测数据。结果表明在1951-2011年,LZU0025月插值数据与实测数据接近,两者的平均绝对差为0.59℃和70.5mm,标准差为1.27℃和122.6mm,并且标准差的变化与GCV变化一致。(3)将LZU0025与现有数据集进行对比。首先以插值所用站点较多的中国气象局发布的0.5°数据集(简称CMA)为基准,利用泰勒图对比了基于不同数据集刻画的气候平均状态均值(Mean)、距离平均状态的标准差(Standard deviation)以及随时间变化的气候趋势(Time trend)。结果表明与基于其他数据集衍生的三类指标相比,LZU与基准CMA相关系数较高,标准差较接近,并且归一化的均方根误差较小。其次,将LZU0025格点数据与能量和水循环观测项目-亚洲季风项目西藏地区(CAMP-Tibet)气象站数据进行对比,结果表明仅有少数台站降水数据与LZU0025相关性不显著,但多数台站气温和降水数据与LZU0025显著相关且相关性高于0.87。基于以上评估分析,LZU0025数据集可靠。高分辨率的LZU0025能刻画更多的气候类型如喜马拉雅山脉地区未被粗分辨率数据集识别的苔原和极地气候。LZU0025可作为研究全球气候变化下区域气候变化和精准农业气候的基础数据。

青藏高原多源遥感合成1km积雪覆盖数据集(1995-2018)

青藏高原多源遥感合成1km积雪覆盖数据集(1995-2018)基于国家卫星气象中心的青藏高原光学仪器遥感1km积雪覆盖数据集(1989-2018)和美国雪冰中心的25km近实时逐日全球冰密集度与积雪范围NISE产品数据集(1995-2019)合成得到,覆盖时间从1995年到2018年(每年1-4月和10-12月两个时段),时间分辨率为逐日,覆盖范围为青藏高原(17°N -41°N,65°E -106°E),采用等经纬度投影,空间分辨率为0.01°×0.01°。数据集以日产品表征了卫星观测时刻的地面是否为积雪所覆盖。输入数据源为NOAA或MetOp卫星AVHRR逐日积雪覆盖产品,TERRA卫星MODIS替代AVHRR对应观测通道生成的逐日积雪覆盖产品,以及DMSP卫星SSM/I或SSMIS逐日全球冰密集度和积雪范围NISE产品。数据集合成方法:以青藏高原光学仪器遥感1km积雪覆盖产品为基础,完全信任其积雪和晴空无雪信息,对有云覆盖、无法判识、缺少卫星观测等区域,在相对高空间分辨率海陆模板的辅助下,利用NISE的陆地有效判识结果进行替换。对于部分水陆边界,因NISE产品空间分辨率较低,合成结果有可能仍存在极少量的云覆盖或者无观测数据区域。基于多年地面气象台站雪深观测资料验证表明,本数据集对晴空条件下地面有无积雪的总体判识准确率在91%以上。数据采用标准的HDF4格式存储,内部有积雪覆盖和质量码两个SDS,维度均为4100列×2400行,且文件内部有完备的属性描述。

青藏高原光学仪器遥感1km积雪覆盖数据集(1989-2018)

青藏高原光学仪器遥感1km积雪覆盖数据集(1989-2018)基于星载光学仪器观测数据云雪判识方法制作,覆盖时间从1989年到2018年(每年1-4月和10-12月两个时段),时间分辨率为逐日,覆盖范围为青藏高原(17°N -41°N,65°E -106°E),采用等经纬度投影,空间分辨率为0.01°×0.01°。数据集以日产品表征了卫星观测时刻晴空无云或透明薄云下的地面是否为积雪所覆盖。输入数据源为NOAA与MetOp卫星的AVHRR L1数据,以及从TERRA/MODIS对应于AVHRR通道的L1数据。产品处理方法为独立于云掩模产品的动态阈值决策树算法(DT),即算法同时判别云雪,且其云检测强调保留雪信息,特别是透明卷云下的雪。DT算法针对不同情况,考虑了多种判识手段,如水云上的冰云,森林和沙地的积雪,薄雪或融雪等;根据地表类型、DEM和季节设定动态阈值;采用多种质量控制手段,如在重度气溶胶或烟尘覆盖的低纬度森林中剔除伪雪,参考最大月雪线和最小雪面亮度温度剔除伪雪;优化不同种类型云雪和晴空无雪陆地的判识流程。DT算法在正常情况下能区分大部分云雪,但会低估10月份青藏高原的积雪。基于多年地面气象台站雪深观测资料验证表明,本数据集对晴空条件下地面有无积雪的总体判识准确率在95%以上。数据采用标准的HDF4格式存储,内部有积雪覆盖和质量码两个SDS,维度均为4100列×2400行,且文件内部有完备的属性描述。