English | 中文
该数据集包含了2018年长江源区人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
该数据集包含了2018年8月黄河源区(扎陵湖北面)人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
该数据集包含了2018年可可西里人工采集的土地覆盖地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
该数据集包含2014年07月23日至2014年08月18日在黑河下游混合林站和超级站观测的热像仪组分温度数据。观测地点坐标分别为101.1335E、41.9903N和101.1374E、42.0012N,海拔约874m。在混合林站和超级站分别使用Testo890-2(热红外图像:640 × 480,可见光2048 × 1536)和Testo875-2i(热红外图像:160 × 120,可见光640 × 480)热像仪,以通量塔为中心,在10m高度处,拍摄塔周围的地表亮温和可见光图像。在混合林站的观测方向为东北、东、东南、西南和西北,在超级站的观测方向为东北、东南、西南和西北。观测时间范围主要为晴空日期的10:00至16:00;各次的观测时间为整点和MODIS、Landsat 8过境时;8月4日的拍摄为配合航空飞行,观测间隔约为10min。
本数据集为基于蒸散发互补方法建立的中国地表蒸散发产品(v1.5),输入数据包括CMFD向下短波辐射、向下长波辐射、气温、气压,以及GLASS地表发射率和反照率、ERA5-land地表温度和空气湿度、NCEP散射辐射率等。本数据集时间跨度为1982年-2017年,空间范围为中国陆地区域。本数据集可为研究长时间尺度水循环和气候变化提供基础。 陆地实际蒸散发 (Ea),单位: mm month-1。 时间分辨率为逐月; 空间分辨率为0.1°; 数据类型:NetCDF; 本数据仅为陆地实际蒸散发,不含水面。
该数据集包含2014年07月22日至2016年07月19日在黑河下游混合林站和超级站观测的组分温度数据。测量地点坐标分别为101.1335E、41.9903N和101.1374E、42.0012N,海拔约874m。所使用的红外辐射计型号为SI-111,数采为CR800。混合林站使用两支传感器分别观测光照胡杨(南侧)和阴影胡杨(北侧)的组分温度。两支传感器架设高约5m,距目标约1m,水平观测。超级站使用两支传感器分别观测裸土和柽柳的组分温度。观测裸土的传感器架设高度约2m,观测天顶角约45°;观测柽柳的传感器架设高度约1m,距被测目标约0.5m,水平观测。
黑河流域上游土壤容重,孔隙度,含水量,水分特征曲线,饱和导水率,颗粒分析,入渗率,以及采样点位置信息。 1、数据为2014年针对2012年补充取样,用环刀取原状土; 2、该土壤容重为土壤干容重,采用烘干法测量。将野外采集的原状环刀土样在烘箱中以105℃恒温24小时,土壤干重除以土壤体积(100立方厘米),单位:g/cm3 。 3、土壤孔隙度,根据土壤容重与土壤孔隙度的关系得到;, 4、土壤入渗分析数据集,数据为2013-2014年野外实验测量数据。 5、入渗数据是用“MINI DISK PORTABLE TENSION INFILTROMETER”进行测量,得到一定负压下的近似饱和导水率。 6、土壤粒度数据是在兰州大学西部教育部重点实验室粒度实验室进行测量。测量仪器为马尔文激光粒度仪MS2000。 7、饱和导水率是依据依艳丽(2009)的定水头发自制仪器进行测量。使用马利奥特瓶在实验过程中始终保持定水头;同时最后将当时测量的Ks转化为10℃时的Ks值进行分析计算。 8、土壤含水量数据是用ECH2O进行测量,包括5层的土壤含水量、土壤温度。 9、水分特征曲线采用离心机法测量:将野外采集的环刀原状土放入离心机,分别用转速0,310,980,1700,2190,2770,3100,5370,6930,8200,11600测量每次的转子重量得到。
数据集包括以下土壤理化性质:pH值、有机质含量、阳离子交换量、根系丰度、总氮(N)、总磷(P)、总钾(K)、碱解氮、速效磷、速效钾、可交换H+、Al3+、Ca2+、Mg2+、K+、Na+、土层厚度、土壤剖面深度、砂、淤泥和C。铺设部分、岩石碎片、体积密度、孔隙、结构、稠度和土壤颜色。提供了质量控制信息(QC)。 分辨率为30弧秒(赤道处约1公里)。土壤性质的垂直变化由8层记录,深度为2.3 m(即0-0.045-0.091、0.091-0.166、0.166-0.289、0.289-0.493、0.493-0.829、0.829-1.383和1.383-2.296 m),以便于在普通土地模型和社区土地模型(CLM)中使用。 数据采用NetCDF格式存储,数据文件名称及其说明如下: 1.THSCH.nc: Saturated water content of FCH 2.PSI_S.nc: Saturated capillary potential of FCH 3.LAMBDA.nc: Pore size distribution index of FCH 4.K_SCH.nc: Saturate hydraulic conductivity of FCH 5.THR.nc: Residual moisture content of FGM 6.THSGM.nc: Saturated water content of FGM 7.ALPHA.nc: The inverse of the air-entry value of FGM 8.N.nc: The shape parameter of FGM 9.L.nc: The pore-connectivity parameter of FGM 10.K_SVG.nc: Saturated hydraulic conductivity of FGM 11.TH33.nc: Water content at -33 kPa of suction pressure, or field capacity 12.TH1500.nc: Water content at -1500 kPa of suction pressure, or permanent wilting point
本数据集来源于论文: Yao, T., Thompson, L., & Yang, W. (2012). Different glacier status with atmospheric circulations in tibetan plateau and surroundings. Nature Climate Change, 1580, 1-5.,数据整理自论文内Supplementary information中的表格数据。 此论文通过对82条冰川退缩、7090条冰川面积减少和15条冰川质量平衡变化的调查,总结了近30年来的冰川状况。 数据集包含8个数据表,数据表名称和内容分别为: Data list:数据列表; t1:Distribution of Glaciers in the TP and surroundings(青藏高原及周边地区冰川分布面积); t2:Data and method for analyzing glacial area reduction in each basin(分析各流域冰川面积减少的数据和方法列表); t3:Glacial area reduction during the past three decades from remote sensing images in the TP and surroundings(基于遥感影像得出的青藏高原及周边地区过去30年中冰川面积减少情况); t4:Glacial length fluctuationin the TP and surroundings in the past three decades(青藏高原及周边地区过去30年中冰川长度波动数据); t5:Detailed information on the glaciers for recent mass balance measurement in the TP and surroundings(青藏高原及周边地区近年来冰川质量平衡测量方法的详细信息); t6:Recent annual mass balances in different regions in the TP(青藏高原不同区域近年来每年质量平衡数据); t7:Mass balance of Long-time series for the Qiyi, Xiaodongkemadi and Kangwure Glaciers in the TP(青藏高原七一冰川,小冬克玛底冰川和抗物热冰川质量平衡长时间序列数据)。 数据详细信息参见附件:Supplementary information.pdf,Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings.pdf。
1)数据内容包含青藏高原地区1992年、2005年、2015年三期土壤侵蚀强度栅格数据,空间分辨率为300米。2)采用中国土壤侵蚀预报模型(CSLE)计算青藏高原4000余个调查单元的土壤侵蚀量。按土地利用对青藏高原范围进行土壤侵蚀量插值。根据《土壤侵蚀分级标准》对土壤侵蚀量进行分级,得到青藏高原土壤侵蚀强度图。3)通过三期土壤侵蚀强度数据的差异变化比较,符合实际变化规律,数据质量良好。4)土壤侵蚀强度数据对青藏高原土壤侵蚀研究和当地生态系统的可持续发展具有重要意义。属性表中代码含义:Value值1,2,3,4,5,6分别代表侵蚀强度微度、轻度、中度、强烈、极强烈、剧烈;BL代表各侵蚀强度面积占总面积的百分比。
青藏高原湖泊众多,该地区湖泊冰期物候和持续时间对区域和全球气候变化非常敏感,因此被用作气候变化研究的关键指标,特别是地球三极环境变化对比研究。但由于其自然环境恶劣,人口稀少,缺乏对湖泊冰物候的常规现场测量。利用中分辨率成像光谱仪(MODIS)归一化差雪指数(NDSI)数据,以500米的分辨率对湖泊冰进行了监测,填补了观测空白。利用传统的雪图算法对晴天条件下的湖泊日冰量和覆盖范围进行检测,利用湖泊表面条件的时空连续性,通过一系列步骤对云层覆盖条件下的湖泊日冰量和覆盖范围进行重新确定。通过时间序列分析308个大于3km2的湖泊确定为湖冰范围和覆盖的有效记录,形成每日湖冰范围和覆盖数据集,包括216个湖泊,可以进一步获取四个湖冰物候参数:开始冻结(FUS),完全冻结(FUE),开始融化(BUS),完全融化(BUE),和92个湖泊,可获取两个参数,FUS和BUE。
使用Sentine-1 SAR 数据对青藏高原黑河流域野牛沟冻土进行监测。采用2014~2018年野牛沟区域Sentine-1 SAR影像,利用了基于分布式雷达目标的小基线集时序InSAR(DSs-SBAS)冻土形变监测方法,结合SAR后向散射系数,MODIS地表温度和Stefan模型,估算了研究区活动层厚度。结果表明活动层厚度在0.8米至6.6米之间,平均值约为3.3米。对开展大范围、高分辨监测具有十分重要的意义。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件