English | 中文
北极地区因其独特的自然条件和地理位置,在全球变化中扮演着非常重要的角色。而极地海冰作为影响气候变化的重要影响因子,是全球气候变化的灵敏器。中国在北极建设的考察站之一——黄河站,其重点支持围绕全球变化及其区域相应、极区空间环境与空间气候、极地环境中的生命特征与过程三大科学领域,为中国深入开展北极科学考察活动提供了重要平台。因此,构建了近年来北极海冰关键区域数据验证产品数据集,实现对北极海冰关键区域的监测情况。
微波散射计冰盖冻融数据覆盖时间更新到2015年到2019年,空间分辨率为4.45km.时间分辨率为逐日,覆盖范围为南北极冰盖。基于微波辐射计的遥感反演方法考虑积雪特性在时空和空间上的变化,首先提取散射计数据的DVPR时间序列数据,有效利用散射计数据的高时间分辨率,同时利用通道差去除地形带来的影响;随后利用广义高斯模型对每一个采样点时间序列的方差值进行拟,以此来区分出干湿雪点,即确定融化范围,这种广义高斯模型相比于传统的双高斯模型需要的输入参数少,得到的阈值也具有唯一性;最后利用移动窗分割算法来精确找到湿雪点的融化开始时间、 结束时间以及持续时间, 可以有效地去除融化或非融化时期的温度突变所带来的影响。长时间序列星载微波散射计数据来自QSCAT和ASCAT两个传感器。通过实测站点的验证表明南极冰盖冻融探测精度在70%以上。数据每一天存放一个bin文件,基于微波散射计的南极冻融数据每个文件由810*680的栅格组成,格陵兰冰盖冻融数据每个文件由810*680的栅格组成(0值:非融化区域,1值:融化区域)。
青藏高原珠峰站和纳木错站点气溶胶光学厚度数据是基于中科院青藏高原所大气辐射观在珠峰站和纳木错站点的观测数据产品而形成,数据覆盖时间从2017年到2019年,时间分辨率为逐小时,覆盖站点为珠峰站和纳木错站点,经纬度坐标为(珠峰站:28.365N, 86.948E,纳木错站:30.7725N,90.9626E)。观测数据来源为MFRSR仪器观测的辐射数据反演获得,所包含特征变量为气溶胶光学厚度,观测反演误差范围约为15%。数据格式为txt格式。
太阳总辐射及吸收和散射性物质衰减的总辐射为采用国际上通用的太阳辐射表(LI200SZ,LI-COR, Inc., USA)测量获得。本测量测量数据为总太阳辐射,包括直射和漫反射的太阳辐射,波长范围400-1100nm。测量结果单位为W/m2,在自然采光下典型误差为± 3%(入射角60°以内)。北极Sodankylä 站的数据来源于与站点合作和网站下载等。北极Sodankylä 站数据覆盖时间更新到2018年。
青藏高原湖泊众多,该地区湖泊冰期物候和持续时间对区域和全球气候变化非常敏感,因此被用作气候变化研究的关键指标,特别是地球三极环境变化对比研究。但由于其自然环境恶劣,人口稀少,缺乏对湖泊冰物候的常规现场测量。利用中分辨率成像光谱仪(MODIS)归一化差雪指数(NDSI)数据,以500米的分辨率对湖泊冰进行了监测,填补了观测空白。利用传统的雪图算法对晴天条件下的湖泊日冰量和覆盖范围进行检测,利用湖泊表面条件的时空连续性,通过一系列步骤对云层覆盖条件下的湖泊日冰量和覆盖范围进行重新确定。通过时间序列分析308个大于3km2的湖泊确定为湖冰范围和覆盖的有效记录,形成每日湖冰范围和覆盖数据集,包括216个湖泊。
微波辐射计冰盖冻融数据集覆盖时间更新到2016到2019年,空间分辨率为25 km;基于微波辐射计的遥感反演方法采用改进的基于小波冰盖冻融探测算法,算法考虑冰盖冻融亮温特性在时间上的变化,首先利用小波变换对格陵兰所有冰盖区域的长时间亮度温度数据进行小波多尺度分解,在不同尺度下对边缘信息进行分析。再次,采用方差分析的方法将冰盖融化和重新冻结过程产生的边缘信息从噪声中分离出来。基于已提取的冰盖长时间亮度温度变化边缘信息,利用广义高斯模型来确定干雪和湿雪分类的最优边缘阈值, 从而探测出格陵兰冰盖发生融化的区域。最后,基于空间自动纠错的原理,运用空间邻域纠错算子对由噪音引起的错误结果进行探测,并进行人工纠错。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在冻融提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明格陵兰冰盖冻融探测精度在70%以上。数据每一天存放一个bin文件,基于微波辐射计的南极冻融数据每个文件由316*332的栅格组成,格陵兰冰盖冻融数据每个文件由304*448的栅格组成(0值:非融化区域,1值:融化区域)。
南极半岛也叫“帕默尔半岛”或“格雷厄姆地”。位于西南极洲,是南极大陆最大、向北伸入海洋最远(南纬63°)的大半岛,东西濒临威德尔海和别林斯高晋海。南极半岛被称为南极洲的“热带”。这里属于典型的副极地海洋性气候,与南极大陆相比,是南极洲最暖、最湿的地区之一,边缘区域的岛屿分布有少量的先锋植物,主要以苔藓和地衣为主。南极半岛及周边植物丰度数据产品通过实测光谱匹配遥感影像,应用纯像元PPI提取出苔藓、地衣、岩石、海、积雪的端元波谱。应用线性混合模型LMM(Linear Mixture Model)计算得到。菲尔德斯半岛特色植被覆盖度根据其与丰度的相关线性关系获得。
基于sentinel-1超分宽幅SAR数据,利用提出的U-net冰裂隙探测方法,形成了南北极冰盖冰裂隙高程数据。首先对sentinel-1超分宽幅SAR数据预处理,主要包括辐射定标、冰盖范围确定和斑点噪声去除。其中,为抑制SAR数据的斑点噪声,同时为了保证冰裂隙特征,我们采用了去除乘性噪声的PPB方法。该方法既能有效去除斑点,还能保留冰裂隙的特征。其次,我们利用提出的基于U-net的冰裂隙探测算法进行冰裂隙提取。为了获取正确冰裂隙SAR数据样本,我们通过比对冰裂隙高分辨率光学数据来对SAR样板进行选取,从而形成冰裂隙SAR数据样本。基于冰裂隙区域和非冰裂隙区域SAR数据样本,我们利用U-net方法对冰裂隙进行提取。最后,我们对探测出的冰裂隙数据进行地理编码形成南北极冰盖冰裂隙产品。
北极阿拉斯加站点气溶胶光学厚度数据是基于美国能源部大气辐射观测计划在北极阿拉斯加站点的观测数据产品而形成,数据覆盖时间更新从2016年到2019年,时间分辨率为逐小时,覆盖站点为北极阿拉斯加站点,经纬度坐标为(71°19′22.8″N, 156°36′32.4″ W)。观测数据来源为MFRSR仪器观测的辐射数据反演获得,所包含特征变量为气溶胶光学厚度,观测反演误差范围约为15%。数据格式为nc格式。
河冰是冰冻圈的主要组成部分,极区河流封冻对北极航运和运输业有重大影响。随着中俄“冰上丝绸之路”的建设,监测额尔齐斯河流域河冰的变化可为河流通航提供理论基础。北极地区水文站的稀疏分布限制了河冰的研究,其中水文站有限的可用数据表明了河冰破裂具有提前的趋势,但驱动这种趋势的特定气候机制十分复杂。因此,具有高时间分辨率的光学数据(如MODIS产品)适用于监测河流冰物候和绘制河流冰盖范围,有助于了解河冰破裂过程。本研究基于MODIS及被动微波数据,实现一种利用不同遥感数据,以对额尔齐斯河流域河冰进行监测的方法,以期分析河流开始封河时间、结束开河时间、开河速率、封河速率和冰冻期持续时间等河冰物候参数。同时亦有助于理解河冰破裂过程对北极气候变暖的响应。
1)数据内容:重建的1289-1993年北极巴伦支海-喀拉海秋季海冰范围时间序列; 2)数据来源及加工方法:冰芯、树轮代用资料;多种统计方法建模; 3)数据质量描述:年分辨率,可信度高; 4)数据应用成果及前景:历史时期北极海冰变化特征及对气候变化的响应和影响。巴伦支海-喀拉海地区是中国冬春季极端冷空气南下的关键海区,但观测资料的缺乏限制对其规律和变化机制的认识,重建长时间尺度北极海冰的变化特征对研究全球背景下北极海冰变化和对中国历史气候的影响有重要意义。
目前,基于提出的利用变化检测和决策树算法的SAR冰盖冻融探测算法,利用sentinel-1 EW SAR数据对南北极冰盖月平均冻融进行了探测。同时利用已经开发的基于大数据平台的冻融产品生产模块,国际上首次生产了南极冰盖和格陵兰冰盖冻融产品,通过自动气象站温度数据研制,冰盖冻融探测精度达到90%。目前,数据产品获取时间主要为南北极的夏季,其中南极冰盖产品为1、2、3、10、11、12月和格陵兰的产品为5、6、7、8、9、10月。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件