English | 中文
南极半岛也叫“帕默尔半岛”或“格雷厄姆地”。位于西南极洲,是南极大陆最大、向北伸入海洋最远(南纬63°)的大半岛,东西濒临威德尔海和别林斯高晋海。南极半岛被称为南极洲的“热带”。这里属于典型的副极地海洋性气候,与南极大陆相比,是南极洲最暖、最湿的地区之一,边缘区域的岛屿分布有少量的先锋植物,主要以苔藓和地衣为主。南极半岛及周边植物光谱和标注数据为2018年1月7-22日南极半岛周边菲尔德斯半岛和阿德利岛的9个区域37个样点的光谱数据,为南极植物分布和变化研究提供本底信息。
斯瓦尔巴群岛(又译斯瓦尔巴特、斯匹次卑尔根群岛)。位于北极地区的群岛,是挪威最北界国土范围的属地,它坐落在欧洲大陆北方,于挪威大陆与北极点两者之间。植被主要是地衣和苔藓类,仅有的树木是小极地柳和矮桦木。该地区采集的植被光谱数据集主要是基于北极斯瓦尔巴群岛新奥尔松地区283个样点的先锋植物调查,调查时间为2018年7月6-22日,采集地点包括伦敦岛,黄河站区和冰川前,为北极苔原区植物分布和变化研究提供本底信息。
夏季阳光照射下,覆盖在冰面上的积雪融化,在冰面上形成的不同形状大小的冰上水池融池。海冰表面融化造成的融池会降低海冰反照率,因而会对极区能量平衡造成显著影响,增加吸收进而加速海冰融化过程。在影响海冰反照率的因素中,融池是最重要且变化最剧烈的因素之一。随着气候的变化,夏季冰融化速度也越来越快。对地球表层的能量平衡具有重要的影响,冰融速度加快也可能使融池这种重要的自然现象成为北极海冰融化季节最显著的冰表面特征之一。融池的反照率介于海水与海冰之间,研究冰上融池也是研究北极海冰快速变化机理的一个重要组成部分。由于海冰融池和海面具有相似的微波信号特征,且受到风速、海冰融化等因素影响利用微波数据进行融池覆盖度的制图具有明显的不确定性,因此最为可靠的融池覆盖度遥感方法为利用中分辨率光学遥感数据(如MODIS)进行亚像元融池覆盖度的制图。本数据集包含利用MODIS数据进行基于动态端元反射率的亚像元分解反演的北极海冰融池覆盖度和海冰密集度。
多年冻土约占青藏高原陆地面积的46%,是冰冻圈重要组成部分。但是,由于多年冻土埋藏较深,其分布难以通过地表观测直接获取,因此,研究多年冻土分布往往依赖于地面观测。该数据集基于多种观测方法,包括:钻孔勘察、坑探、土壤温度和探地雷达,获取青藏高原多年冻土分布点尺度信息,并归档形成首个青藏高原多年冻土存在性数据集(v1.0)。数据集包含626条信息,覆盖不同海拔、坡向和气候状态。同时,根据观测方式和数据质量,对数据的置信度进行了分类,为不同研究目的使用该数据提供了参考。该数据为多年冻土分布提供了本底信息,可用于多年冻土模拟验证和未来气候变暖下多年冻土退化评估。
基于2015年夏季Landsat8 OLI遥感影像,提取覆盖“一带一路”范围内的典型样点该影像的光谱特征值。波段包括band (0.45 - 0.51μm)、band (0.53 - 0.59μm)、band (0.64 - 0.67μm)、band (0.85 - 0.88μm)、band (1.57 - 1.65μm)、band (2.11 - 2.29 μm)、band (10.60 - 11.19 μm)和band (11.50 - 12.51 μm)等八个,同时基于“一带一路”区域土地利用数据(V1.0)(2015)提取了每个样地的土地覆被/利用类型(10个)。数据包括excel格式和shp格式,shp数据文件为光谱特征数据集每个样地的空间分布及光谱信息。
基于最新发布的青藏高原多年冻土存在性证据数据集,利用统计模型计算得到了1公里分辨率青藏高原多年冻土概率分布图。该图考虑了气温、积雪和植被这三个多年冻土分布控制性因素,因此能够准确地反应青藏高原冻土的空间异质性。根据1000多个实测资料验证和与已有多年冻土图的对比结果显示,该图的整体分布精度为82.5%,卡帕系数可达到0.62,在多年冻土下界表现出了更好的分类效果。结果显示,青藏高原多年冻土区面积约为1.54 (1.35–1.66) 百万平方公里, 约占陆地面积的 60.7 (54.5– 65.2)% 。多年冻土面积 约为 1.17 (0.95–1.35)百万平方公里,约占46 (37.3–53.0)%。
数据来源于联合国粮农组织(FAO)和维也纳国际应用系统研究所(IIASA)所构建的世界土壤数据库(Harmonized World Soil Database version 1.1 )(HWSD). 中国境内数据源为第二次全国土地调查南京土壤所所提供的1:100万土壤数据。 该数据可为建模者提供模型输入参数,农业角度可用来研究生态农业分区,粮食安全和气候变化等。数据格式:grid栅格格式,投影为WGS84。采用的土壤分类系统主要为FAO-90。 土壤属性表主要字段包括: SU_SYM90(FAO90土壤分类系统中土壤名称); SU_SYM85(FAO85分类); T_TEXTURE(顶层土壤质地); DRAINAGE(19.5); REF_DEPTH(土壤参考深度); AWC_CLASS(19.5); AWC_CLASS(土壤有效水含量); PHASE1: Real (土壤相位); PHASE2: String (土壤相位); ROOTS: String (到土壤底部存在障碍的深度分类); SWR: String (土壤含水量特征); ADD_PROP: Real (土壤单元中与农业用途有关的特定土壤类型); T_GRAVEL: Real (碎石体积百分比); T_SAND: Real (沙含量); T_SILT: Real (淤泥含量); T_CLAY: Real (粘土含量); T_USDA_TEX: Real (USDA土壤质地分类); T_REF_BULK: Real (土壤容重); T_OC: Real (有机碳含量); T_PH_H2O: Real (酸碱度) T_CEC_CLAY: Real (粘性层土壤的阳离子交换能力); T_CEC_SOIL: Real (土壤的阳离子交换能力) T_BS: Real (基本饱和度); T_TEB: Real (交换性盐基); T_CACO3: Real (碳酸盐或石灰含量) T_CASO4: Real (硫酸盐含量); T_ESP: Real (可交换钠盐); T_ECE: Real (电导率)。 其中以T_开头属性字段表示上层土壤属性(0-30cm),以S_开头属性字段表示下层土壤属性(30-100cm)。 具体属性值代表何意义请参考文件夹下说明文档*.pdf及数据库*.mdb。
该数据集提供1978年10月24日到2012年12月31日逐日的中国范围的积雪厚度分布数据,其空间分辨率为25km。用于反演该雪深数据集的原始数据来自美国国家雪冰数据中心(NSIDC)处理的SMMR(1978-1987年),SSM/I(1987-2008年)和AMSR-E(2002-2012)逐日被动微波亮温数据。由于三个传感器搭载在不同的平台上,所以得到的数据存在一定的系统不一致性。通过对不同传感器的亮温进行交叉定标提高亮温数据在时间上的一致性。然后利用车涛博士在Chang算法基础上针对中国地区进行修正的算法进行雪深反演。具体反演方法参考“数据说明文档”。 该数据集包含EASE-Grid和经纬度两种投影方式,分别放入两个不同的文件夹中:ease-grid_rar(数据仅到2010年)和lon-lat_rar。两种投影的数据都逐年打包,文件命名方式为:传感器名称简写+年份,如ease-grid_rar目录下的SR1985表示用SMMR亮温数据反演的1985年的雪深;SI1990表示用SSM/I亮温数据反演的1990年的雪深;AE2005表示用AMSR-E亮温数据反演的2005年的雪深,这些数据的投影方式都是EASE-Grid。lon-lat_rar目录下,上面的数据集名称解释相同,只是其投影方式为经纬度投影。详细数据说明请参考数据文档。
全球台风路径数据集包含了2018年29个发生在西北太平洋的台风路径点的数据,包含时间、经纬度、中心气压、风速风力、未来移向、未来移速、风力等级等指标;数据来源于中央气象台台风网(http://typhoon.nmc.cn/web.html),使用python抓取了网页发布的台风路径数据,并将抓取的excel数据表整理导成shapefile形式,按照台风风力等级划分标准赋予每一个路径点风力等级; 可以应用于基于台风路径点的移动情况、风速风力等的特征、影响分析。
数据内容:本数据集包含3种分辨率(0.25度、0.75度和2度)青藏高原多年平均月温度递减率(单位:℃/m)网格数据 数据来源及加工方法:基于高程标准差和相关性阈值动态检测不同分辨率网格内MODIS地温-海拔样本的有效性来获得局部可靠的温度递减率 数据质量描述:基于青藏高原113个站点的1980-2014年间日平均气温观测,对ERA-Interim气温数据应用0.75度气温递减率产品进行日平均气温的空间降尺度,使其验证误差(均方根误差)由~4℃降低到~2℃。 数据应用成果及前景:该数据集可应用于多种再分析资料的气温降尺度。
结合Landsat影像(4215景)、地形图,利用半自动水体提取及人工目视检查编辑,完成了过去60多年来(1960s, 1970s, 1990, 1995, 2000, 2005, 2010, 2015, 2020)详细的中国湖泊(大于1平方公里)数量与面积变化研究。从1960s到2020年,中国湖泊总数量(≥ 1 km^2)从2127个增加到2621个,面积从68537 km^2扩张到82302 km^2 。
本数据集是建立在青藏高原基础上的高原土壤水分和土壤温度观测数据,用于量化粗分辨率卫星和土壤水分和土壤温度模型产物的不确定性。青藏高原土壤温湿度观测数据(Tibet-Obs)由四个区域尺度的原位参考网络组成,包括寒冷半干旱气候的那曲网络,寒冷潮湿气候的玛曲网络和寒冷干旱的阿里网络,以及帕里网络。这些网络提供了对青藏高原不同气候和地表水文气象条件的代表性覆盖。 - 时间分辨率:逐时 - 空间分辨率:点测量 - 测量精度:土壤水分,0.00001;土壤温度,0.1℃;数据集尺寸:标称深度为5,10,20,40和80厘米的土壤水分和温度统计值 - 单位:土壤水分,cm ^ 3 cm ^ -3; 土壤温度, ℃
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件