English | 中文
本产品基于多源遥感DEM数据生成,步骤如下:以Landsat ETM+、SRTM 和ICESat遥感数据为参考在相对稳定和平坦的地形区域内选控制点。控制点水平坐标是以Landsat ETM+ L1T全色影像作为水平参考进行获取。控制点的高度坐标则主要通过ICESat GLA14高程数据进行获取,在无ICEsat分布的区域内以SRTM高程数据补充。利用选取的控制点和自动生成的连接点,通过Brown’s物理模型对透镜畸变和残余形变进行补偿,使得所有立体像对的空中三角测量结果中影像总RMSE<1个像素。为了对提取的DEM数据进行编辑以消除明显的高程异常值,采用了DEM内插、DEM滤波和DEM平滑等方法对冰川上的DEM进行了编辑,并对西昆仑-西和西昆仑-东区域的KH-9 DEM数据进行了拼接,从而形成产品。
三极气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。气溶胶类型数据融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终的三极地区气溶胶类型数据(共12种)和质量控制结果。该数据产品充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。
基于WRF模式,以ERA5再分析资料为初始和边界场,通过动力降尺度的方法,初步获得了青藏高原高分辨率低层大气结构和地气交换数据集。该数据集时间范围为2014年8月1日-8月31日,时间分辨率1小时,水平范围25oN-40oN,70oE-105oE,水平分辨率为0.05°。数据格式为NetCDF,每一小时数据输出一个文件,文件以日期命名。低层大气结构数据包含温度、相对湿度、水汽混合比、位势高度、经向风、纬向风气象要素,垂直方向为34层等压面;地气交换数据集包含地表接收的向上/向下短波辐射、向上/向下长波辐射、地表感热和通量、2米气温和水汽混合比、10米风等。该数据集可对青藏高原天气过程和气候环境研究提供数据支撑。
本研究数据主要基于Google Earth Engine大数据云处理平台,选用2017年三江源、普尔河、育空河流域Sentinel-2为基础数据,SRTM-DEM和Global Surface Water为辅助数据,选用AWEIn,AWEIs,WI2015,MNDWI,NDWI等多种水体指数阈值提取的方法,依据年水体频率获得季节水体与永久水体分类数据(空间分辨率10m)。该水体数据产品,为高时空分辨率水体变化和冻土水文分析提供了有效基础数据。
湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要的指标,但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行了监测,填补了观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集,可以获得这些湖泊不同类型湖冰的分布,数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。
GLObal WAter BOdies database(GLOWABO)数据集,Charles Verpoorter等人基于GeoCoverTM Water bodies Extraction Method利用2000±3年Landsat 7 ETM+影像,获得全球水体数据集。水体提取方法结合主成分分析、阈值提取、纹理特征提取等多种方法,空间分辨率15m,总体精度91%。数据还包括水体面积、周长、形状指数、高程等信息。本数据集选区其中三江源流域、普尔河流域、育空河流三个流域数据集,为北半球极地水文研究提供数据支持。
“Poles AOD Collection 1.0”气溶胶光学厚度(AOD)数据集采用自主研发的可见光波段遥感反演方法,结合Merra-2模式数据与NASA的官方产品MOD04制作,数据覆盖时间从2000年到2019年,时间分辨率为逐日,覆盖范围为“三极”(南极、北极和青藏高原)地区,空间分辨率为0.1度。反演方法主要采用自主研发的APRS算法,反演了冰雪上空的气溶胶光学厚度,算法考虑了冰雪地表的BRDF特性,适用于冰雪上空气溶胶光学厚度的反演。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
本项目是基于东天山庙尔沟冰芯(94°19′E,43°03′N,4518 m)高氯酸等元素数据,重建了1956-2004高氯酸历史变化。数据内容:1956-2004年高氯酸浓度(包括:Cl-, NO3- 和SO42-);数据来源,通过ESI-MS/MS测试;数据质量:空白样品显著低于样品值,质量较好;数据应用成果及前景:数据已发表,具体信息见Zhiheng Du, Cunde Xiao, Vasile I. Furdui C,Wangbin Zhang. (2019). The perchlorate record during 1956–2004 from Tienshan ice core, East Asia. Science of the Total Environment.可提供中亚其他冰芯对比研究。
基于20世纪60年代的锁眼卫星数据,采用面向对象的监督分类,结合人工目视解译修正,生产出水体数据产品。总解译面积64.5万km2,占研究区96.28%,其中三江源研究区影像缺失18844 km2,阿拉斯加育空流域研究区影像缺失4220 km2,西西伯利亚普尔河流域研究区影像缺失1954 km2。解译最小线状地物图上宽度大于8米,最小面状地物图上面积大于100平方米,描迹精度2个象元,一级类解译精度达到95%以上。获取的高空间分辨率水体数据产品,为上世纪70年代水体变化研究提供有效数据,也为冻土变化研究提供可靠依据。
冰盖高程变化数据首先利用2004年和2008年的GLAS12的数据获取两年间的重复轨道,在理想情况下每个轨道都是严格重复测量的,但由于轨道偏差,无法保证轨道按照设计严格重复,偏差在几米到几百米不定,取500m*500m的格网,认为落在同一格网内的点为重复轨道的重复点,相减获取2004-2008年的高程变化,获得年度的高程变化。在格陵兰中部地形平缓区域,高程变化较为准确,但在边缘地带,高程变化明显存在较大误差,可能是因为在边缘区域的坡度较大,500m*500m的范围内的点的高程会有较大的变化,因此在边缘区的高程变化有待改正。为对比不同的方法,采用2004年和2008年的GLAS12的春季数据获取这两年间的交叉点,2004年的降轨与2008年的升轨可以获得一组交叉点对应的高程变化;2004年的升轨与2008年的降轨也可以获得一组交叉点对应的高程变化。两组交叉点作为2004年到2008年的高程变化数据,采用克里金插值获得高程变化图。采用交叉点的方法获取的高程变化得到在边缘区域的结果有明显的改善,但在格陵兰东中部部分区域内的高程变化趋势有明显的误差,这些误差可能是季节性变化引起的。因此,采用2004年到2008年的GLAS12的春季数据获取每两年间的交叉点,每两年可以获得两组交叉点数据,总共获得十组交叉点。将这十组交叉点作为2004年到2008年的高程变化数据,与前两次比较发现,高程变化精度有所提高。
河湖冰物候对气候变化敏感,是指示气候变化的重要指示因子。308个Excel文件名称对应于湖泊编号。每个excel文件包含6个列,包含2002年7月至2018年6月对应湖泊的日冰覆盖率信息。每一列的属性分别为:日期、湖水覆盖率、湖水冰覆盖率、云覆盖率、湖水覆盖率和经过云处理后的湖面冰覆盖率。通常以0.1、0.9的冰覆盖面积比作为判别湖泊冰物候的依据。数据集包含的excel文件可以进一步获取四个湖冰物候参数:开始冻结(FUS),完全冻结(FUE),开始融化(BUS),完全融化(BUE),和92个湖泊,可获取两个参数,FUS和BUE。
南极半岛也叫“帕默尔半岛”或“格雷厄姆地”。位于西南极洲,是南极大陆最大、向北伸入海洋最远(南纬63°)的大半岛,东西濒临威德尔海和别林斯高晋海。南极半岛被称为南极洲的“热带”。这里属于典型的副极地海洋性气候,与南极大陆相比,是南极洲最暖、最湿的地区之一,边缘区域的岛屿分布有少量的先锋植物,主要以苔藓和地衣为主。南极半岛及周边植物丰度数据产品通过实测光谱匹配遥感影像,应用纯像元PPI提取出苔藓、地衣、岩石、海、积雪的端元波谱。应用线性混合模型LMM(Linear Mixture Model)计算得到。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件