English | 中文
本数据为中亚大湖区2017年逐6小时分辨率常规和卫星资料。其中常规资料包含中亚大湖区及其周边地区(中国、哈萨克斯坦、吉尔吉斯斯坦、土库曼斯坦、塔吉克斯坦、乌兹别克斯坦、阿富汗、俄罗斯、伊朗、巴基斯坦、印度等)的地面台站和探空站点观测,观测要素包含气温、气压、风速和湿度,每个时次的站点数平在600个左右,站点间距离在10-100km之间;卫星资料来源于极轨气象卫星(NOAA-18、NOAA-19、METOP-A和METOP-B)反演的云导风,并重采样到30km水平分辨率。云导风通过追踪示踪云的移动来估计风速,由示踪云的高度确定风场高度。本数据全部来源于全球电信系统Geostationary Tether Satellite(GTS),经过质量控制剔除了质量较差的观测资料。该数据可应用于中亚大湖区的资料同化,也可用于检验和评估模式对中亚大湖区的数值模拟。
本数据总结了2016年中亚五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、乌兹别克斯坦和土库曼斯坦)农业以及社会经济现状。本数据来源于中亚五国统计年鉴,包括总人口、耕地面积、粮食生产面积、GDP、农业GDP占总GDP比重、工业GDP占总GDP比重、森林面积等六个要素。详细的统计了中亚五国六个社会经济要素的情况。通过统计可以看出中亚五国六个要素之间各有侧重。本数据为项目提供了基础数据,便于后续分析中亚生态与社会的情况,为项目数据分析提供了数据支持。
在全球变暖的背景下,干旱发生的频率和强度呈增加趋势,由于干旱灾害所引发的水资源匮乏、粮食危机、生态恶化(如荒漠化)等,直接威胁到国家的粮食安全和社会经济发展,干旱灾害风险评估及应急管理的技术水平亟待提高。“一带一路”沿线区域生态环境脆弱、农业耕地集中、干旱灾害频繁,利用遥感卫星监测大区域的干旱水平及其时空变化,对于科学掌握“一带一路”地区的干旱格局、区域分异特征,及其对农业耕地的影响具有重要的科学和现实意义。相对湿润度指数为某段时间的降水量与同时段内潜在蒸散量之差再除以同时段内潜在蒸散量得到。降水量数据来自TRMM/GPM卫星降水数据降尺度,潜在蒸散量的估算采用Thornthwaite方法。详细算法请参考《气象干旱国家标准》(GB/T 20481-2017)。数据仅覆盖一带一路沿线34个关键节点区域。
青藏高原由于高云覆盖,通常用来监测湖泊面积的光学遥感影像数据,如Landsat只能用来监测湖泊年尺度面积变化,而对湖泊季节变化研究了解较少。使用Sentinel-1 SAR数据,对青藏高原大于50平方公里湖泊月尺度面积进行了提取。研究显示,湖泊的季节变化显示出截然不同的模式,面积较大的湖泊(> 100 km2)在8-9月达到峰值,而较小的湖泊(50-100 km2)面积在6-7月达到峰值。封闭湖泊面积的季节峰值更突出,而外流湖的季节峰值更平缓。冰川补给湖相对于非冰川补给湖显示了延迟的面积峰值。同时,大尺度的大气环流,如西风、印度季风、和东亚季风也影响着湖泊面积的季节变化。此研究为监测湖泊面积年内变化弥补了空白。
该数据集包含了2012年7月至2013年8月采集的黑河流域典型土壤样点的土壤容重数据。2012年组织开展了第1次野外土壤调查采样。2013年在对已有土壤剖面样点进行定量评估的基础上,重点对已有剖面点代表性较差的景观区域进行土壤环境分析,形成补充性调查方案,组织开展了第2次土壤调查采样。黑河流域典型土壤样点采集方式为代表性采样,所采集样点覆盖了黑河流域的上游、中游、下游地区,涵盖了黑河流域的典型景观类型,能够反映黑河流域土壤属性整体的空间分布规律。野外土壤样品采集的深度参照中国土壤系统分类,以诊断层和诊断特性为基础,采取土壤剖面的土壤发生层样品。
青藏高原的水土资源匹配数据,由站点气象数据(2008-2016年,国家气象数据共享网)经过彭曼公式计算得出的潜在蒸散发数据,利用土地利用的不同土地类型,根据下垫面影响系数计算现有土地利用下的蒸散发量;以及气象数据中的站点降雨数据插值得到的降雨数据,根据两者差值得到水土资源匹配系数。实际降雨与现有土地利用条件下的需水量之间的差值来反映水土资源的匹配性,数值越大匹配性越好。水土资源的匹配情况的空间分布能为进一步了解青藏高原的农牧业资源情况做铺垫。
该数据集包含了2012年7月至2013年8月采集的黑河流域典型土壤样点的土壤有机碳数据。2012年组织开展了第1次野外土壤调查采样。2013年在对已有土壤剖面样点进行定量评估的基础上,重点对已有剖面点代表性较差的景观区域进行土壤环境分析,形成补充性调查方案,组织开展了第2次土壤调查采样。黑河流域典型土壤样点采集方式为代表性采样,所采集样点覆盖了黑河流域的上游、中游、下游地区,涵盖了黑河流域的典型景观类型,能够反映黑河流域土壤属性整体的空间分布规律。野外土壤样品采集的深度参照中国土壤系统分类,以诊断层和诊断特性为基础,采取土壤剖面的土壤发生层样品。
本数据集采用SMMR(1979-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)逐日亮温数据,由双指标(TB_37v,SG)冻融判别算法生成,分类结果包含冻结地表、融化地表、沙漠及水体四种类型。数据覆盖范围为三江源区域,空间分辨率为25.067525 km,EASE Grid投影方式,以Geotif格式存储。像元数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表水体。因为该数据集中所有tif文件描述的是三江源国家公园范围,所以这些文件的行列号信息是不变的,摘录如下(其中cellsize单位为m): ncols 52 nrows 28 cellsize 25067.525 nodata_value 0
中亚地区气温和辐射数据时间分辨率为月尺度,空间分辨率分别为0.5度和0.05度,采用GCS_WGS_1984投影坐标系统。其中,辐射数据计算采用了GLDAS的下行短波辐射、空气温度数据和空气水汽压数据、MOD11C3的地表温度/发射率数据、MCD43C3地表反照率数据和ASTER_GEDv4.1比辐射率数据计算得到;温度数据计算采用了MOD06_L2云产品和MOD07_L2大气剖面数据计算得到。本数据基于先进的遥感算法,充分利用目前精度较高的遥感数据和产品,区别于传统的气候模式对气候要素的估算原理。本数据可用于中亚地区水资源时空变化特征、农业水资源供需关系分析和水资源开发潜力评估等。
该数据集是基于MODIS 16天合成的NDVI产品(MOD13Q1 collection6)估算的三江源国家公园区域的植被生长季开始(Start of Season: SOS)和生长季结束的日期(End of Season: EOS)。共用了两种常见的物候期估算方法,分别是基于多项式拟合的阈值提取法(文件名中有poly字符)和基于双逻辑曲线(double logistic function)拟合后的拐点提取法(文件名中有sig字符)。该数据可以用来分析植被物候期与气候变化的关系。时间范围为2001年至2020年。空间分辨率为250m。数据中包含4个子文件夹,CJYYQ_phen是三江源国家公园长江源园区的物候结果,HHYYQ_phen是三江源国家公园黄河源园区的物候结果,LCJYYQ_phen是三江源国家公园澜沧江源园区的物候结果,SJY_phen是整个三江源区域的物候。 数据格式为geotif,建议使用arcmap或者Python+GDAL浏览和处理数据。
PML_V2陆地蒸散发与总初级生产力数据集,包括总初级生产力(gross primary product, GPP),植被蒸腾(vegetation transpiration, Ec),土壤蒸发(soil evaporation, Es),冠层截流蒸发(vaporization of intercepted rainfall, Ei)和水体、冰雪蒸发(ET_water),共5个要素。数据格式为tiff,时空分辨率为8天、0.05°,时间跨度为2002.07-2019.08。 PML_V2在Penman-Monteith-Leuning (PML) 模型的基础上,根据气孔导度理论,耦合了GPP过程。GPP与ET相互制约、相互限制,使得PML_V2在ET模拟精度,相对于以往的模型有很大的提升。PML_V2的参数分不同的植被类型,在全球95个涡度相关通量站上率定。其后根据MODIS MCD12Q2.006 IGBP分类,将参数移植至全球。PML_V2采用GLDAS 2.1的气象驱动和MODIS 叶面积指数(LAI)、反射率(Albedo),发射率(Emissivity)为输入,最终得到PML_V2陆地蒸散发与总初级生产力数据集。
过去五十年,阿拉斯加地区冰川对海平面贡献占全球山地冰川总贡献的三分之一。 在RGI6.0的基础上,我们利用遥感和地理信息系统技术对阿拉斯加地区冰川编目数据进行了更新。更新的冰川编目采用的数据源为2018年Landsat OLI空间分辨率15m遥感影像,使用的方法为人工解译。结果显示,阿拉斯加地区冰川编目包括了现有冰川27043条,总面积81285km2。数据误差4.3%。该数据将为研究全球变化大背景下阿拉斯加地区冰川变化评估、冰川变化的区域和全球影响提供重要的数据支撑。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件