黑河流域大气驱动数据集(2000-2021)

黑河流域近地表大气驱动数据,是采用Weather Research and Forecasting(WRF)模式制备的黑河流域逐时0.05°× 0.05°包括2m气温、地表气压、2m水汽混合比、辐射、10m风场和累积降水等近地表大气要素的驱动数据。通过与15个中国气象局常规自动气象站(CMA)站点逐日观测资料和两期黑河流域生态-水文过程综合遥感观测联合试验(WATER和HiWATER)的站点逐时观测资料在不同时间尺度上进行验证,得出以下结论:2m地表气温、地表气压和相对湿度都是比较可信的,尤其是2m地表气温和地表气压,平均误差都很小且相关系数都达到0.96以上;向下短波辐射与WATER站点观测数据的相关性达到0.9以上;降水资料通过降雨和降雪两种相态与观测资料在不同时间尺度和空间尺度上进行验证,降雨与观测资料在年、月、日和时尺度上吻合得很好,与观测资料在年和月尺度上的相关系数高达0.94和0.84;降雪与观测资料在月尺度上的相关性达到0.78,与积雪覆盖率MODIS遥感产品的空间分布相当吻合,峰值分布也一致。液态和固态降水的验证表明WRF模式能够在地形复杂而干旱的黑河流域进行降尺度分析,所模拟的资料能够满足流域尺度水文建模和水资源平衡研究。 2013年提供了2000-2012年数据。 2016年更新了2013-2015年数据。 2019年更新了2016-2018年数据。 2022年更新了2019-2021年数据。

1970s和2000s青藏高原冰川储量数据集

数据集包含1970s和2000s青藏高原内所有单个冰川储量(单位km3)。该数据集来源于题目为“Consolidating the Randolph Glacier Inventory and the Glacier Inventory of China over the Qinghai-Tibetan Plateau and Investigating Glacier Changes Since the mid-20th Century”论文的结果数据,该论文初稿已完成,并计划向Earth System Science Data投稿。数据集中1970s基础冰川目录数据提取自Randolph Glacier Inventory数据集,2000s基础冰川目录来源于中国第二次冰川编目数据集,基于二者提取出的青藏高原内部冰川边界并结合基于栅格的基岩高程数据集(https://www.ngdc.noaa.gov/mgg/global/global.html,doi:10.7289/V5C8276M)和利用一种依赖于坡度计算(slope-dependent)方法得到的冰川表面高程数据集,进而计算出两期目录中单个冰川储量。另外,本次研究已将获得的单个冰川储量计算结果与已往研究的部分冰川储量计算结果、相关遥感数据集、基于多个冰川模型集合平均得到的全球冰川厚度数据集(https://www.research-collection.ethz.ch/handle/20.500.11850/315707,doi:10.3929/ethz-b-000315707)进行了多方位比对、验证,还量化了计算结果存在的误差(各山脉冰川储量计算结果误差率均在10%以内)。该数据集的建立以期为未来区域水资源总量估算及冰川消融等相关研究提供数据基础,同时该数据的获取也为未来冰川储量研究提供了新的思路。

中国冰冻圈资源与环境信息系统-青藏公路沿线基础数据

中国冰冻圈是指中国范围内,大气圈、水圈、生物圈、岩石圈的冻结部分。中国冰冻圈资源与环境信息系统是对中国冰冻圈资源与环境数据进行管理与分析的综合性信息系统。建立中国冰冻圈资源与环境信息系统一方面是满足地球系统科学的需要,为研制地理信息系统支持下的冻土、冰川以及雪盖对全球变化的响应与反馈模型提供参数与验证数据;另一方面系统整理和抢救宝贵的冰冻圈数据,为其提供一个科学、高效、安全的管理与分析工具。 中国冰冻圈资源与环境信息系统包含三个不同空间的基础数据库。其中青藏公路沿线部分的研究区域主要是青藏公路自西大滩到那曲约700公里长、公路两侧20~30公里宽的区域,这一区域广泛分布着多年冻土。青藏公路沿线基础数据库包含以下类型的数据: 1、冰冻圈数据。包括:积雪深度分布。 2、自然环境与资源。包括: 基础地质:第四纪地质(Quatgeo) 3、公路沿线冻土钻孔观测数据(Borehole):青藏公路沿线200个钻孔探测资料。 工程地质剖面图(CAD):岩性分布、含水量、颗分资料等 4、青藏公路沿线地区冰川质量平衡分布模型(Model):预测冻土格网数据。 青藏公路沿线图形数据包括13幅的比例尺为1:250000图幅;格网尺寸为100×100m。 详情请查看数据中的文档“中国冰冻圈资源与环境信息系统设计.doc”、“中国冰冻圈资源与环境信息系统数据字典.DOC”、“数据库-青藏公路.DOC”。

全球历史海面温度、海面风场等海洋要素模式数据集(1990-2018)

一个具有完整全球海洋覆盖范围的网格化海洋温度数据集是了解气候变化和气候变异性的一个非常有价值的资源。大气物理研究所(iap)通过若干创新步骤,对1990年以来2000米高空的历史海洋地下温度进行了新的客观分析。第一种方法是使用一组更新的过去的观察结果,这些新的观测结果已经被纠正了偏差(例如,在地震中)。XBT偏置校正CH14方案,XBT社区推荐。第二个是在海洋中不同地方的值之间使用协变性和来自包括一个全面海洋模型的若干气候模型的背景信息。第三个是扩大每个观测对较大区域的影响,认识到南大洋广阔开放的广阔空间的相对同质性。然后,这些观测也被用来提供更精细的尺度细节。最后,通过使用最近观测到的海洋状态的知识仔细地评估了新的分析,但是使用更遥远的过去的观测的稀疏分布进行次采样,以表明该方法产生无偏的历史重建。 海面风场数据集使用RSS第7版微波辐射计风速数据构建。输入的微波数据由遥感系统处理,资金来自美国宇航局测量计划和美国宇航局地球科学物理海洋学计划。 该风速产品用于气候研究,因为输入数据经过了仔细的相互校准和一致的处理。每个netCDF文件包含: 1)风速月平均值,网格尺寸360x180x自1988年1月以来所有月份的数量(随时间增加); 2)一组12个月的气候学风速,网格大小为360x180,气候学是1988-2007年20年期间计算的平均值; 3)从1988年1月以来360x180x#个月的月平均数减去上述气候图得出的风速月异常(随时间增加); 4)风速趋势图,网格尺寸360x180,趋势计算时间为1988-01-01至最近完整日历年;5)时间纬度图(有效数据至少需要10%的纬度单元),网格尺寸为自1988年1月起180 x#个月(随时间增加)

A long term half-hourly eddy covariance dataset of consistently processed CO2 and H2O Fluxes from the Tibetan Alpine Steppe at Nam Co (2005 - 2019)

The data set contains nearly 15 years of eddy covariance data from an alpine steppe ecosystem on the central Tibetan Plateau.The data was processed following standardized quality control methods to allow for comparability between the different years of our record and with other data sets. To ensure meaningful estimates of ecosystem atmosphere exchange, careful application of the following correction procedures and analyses was necessary: (1) Due to the remote location, continuous maintenance of the eddy covariance (EC) system was not always possible, so that cleaning and calibration of the sensors was performed irregularly. Furthermore, the high proportion of bare soil and high wind speeds led to accumulation of dirt in the measurement path of the infrared gas analyzer (IRGA). The installation of the sensor in such a challenging environment resulted in a considerable drift in CO2 and H2O gas density measurements. If not accounted for, this concentration bias may distort the estimation of the carbon uptake. We applied a modified drift correction procedure following Fratini et al. (2014) which, instead of a linear interpolation between calibration dates, uses the CO2 concentration measurements from the Mt. Waliguan atmospheric observatory as reference time series. (2) We applied rigorous quality filtering of the calculated fluxes to retain only fluxes which represent actual physical processes. (3) During the long measurement period, there were several buildings constructed in the near vicinity of the EC system. We investigated the influence of these obstacles on the turbulent flow regime to identify fluxes with uncertain land cover contribution and exclude them from subsequent computations. (4) We calculated the de-facto standard correction for instrument surface heating during cold conditions (hereafter called sensor self heating correction) following Burba et al. (2008) and a revision of the original method following Frank and Massman (2020). (5)Subsequently, we applied the traditional and widely used gap filling procedure following Reichstein et al. (2005) to provide a more complete overview of the annual net ecosystem CO2 exchange.(6) We estimated the flux uncertainty by calculating the random flux error (RE) following Finkelstein and Sims (2001) and by using the standard deviation of the fluxes used for gap filling(NEE_fsd) as a measure for spatial and temporal variation.