WATER: EO-1 Hyperion dataset

Eo-1 (Earth Observing Mission) is a new Earth Observing satellite developed by NASA to replace Landsat7 in the 21st century. It was launched on November 21, 2000.The orbit of eo-1 satellite is basically the same as that of Landsat7, which is a solar synchronous orbit with an orbital altitude of 705km and an inclination Angle of 98.7°, which is 1min less than that of Landsat7 and crosses the equator.On board of EO 1 3 kinds of sensors, namely, the Advanced Land Imager (ALI (the Advanced Land Imager), atmospheric correction instrument AC (Atmosp heric Corrector) and compose a specular as spectrometer (Hyperion), Hyperion sensor is first spaceborne hyperspectral mapping measurement instrument, the hyperspectral data a total of 242 bands, spectral range is 400 ~ 2500 nm, spectral resolution up to 10 nm, ground resolution of 30 m. Currently, there are 6 scenes of eo-1 Hyperion data in heihe river basin.The coverage and acquisition time were: 4 scenes in the encrypted observation area of zhangye urban area + yingke oasis encrypted observation area (2007-09-10, 2008-05-12, 2008-05-20, 2008-07-15).Two scenes of the iceditch watershed observation area were encrypted, the time was 2008-03-17, 2008-03-22, respectively. Product grade is L1 without geometric correction. The eo-1 Hyperion remote sensing data set of heihe integrated remote sensing joint experiment was acquired by researcher wang jian and Beijing normal university through purchase. (note: "+" represents simultaneous coverage)

Soil texture dataset of hwsd in Qaidam River basin (2009)

The dataset is the HWSD Soil texture data set of the qaidam basin. The data is from the Harmonized World Soil Database (HWSD) constructed by the United Nations food and agriculture organization (FAO) and Vienna institute for international applied systems (IIASA), which was released in version 1.1 on March 26, 2009.The data resolution is 1km.The main soil classification system adopted is fao-90.The main fields in the soil property list include SU_SYM90 (soil name in the FAO90 soil classification system) SU_SYM85(FAO85 classification) T_TEXTURE(top layer soil texture) (19.5);ROOTS: String(deep classification of obstacles to the bottom of the soil);SWR: String (soil moisture content characteristics);ADD_PROP: Real (specific type of soil in a soil unit related to an agricultural use);T_GRAVEL: Real (percent by volume);T_SAND: Real;T_SILT: Real (silt content);T_CLAY: Real;T_USDA_TEX: Real (USDA soil texture classification);T_REF_BULK: Real (soil bulk density);T_OC: Real (organic carbon content);T_PH_H2O: Real T_CEC_CLAY: Real;T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation);T_TEB: Real (commutative base);T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content);T_ESP: Real (exchangeable sodium);T_ECE: Real.The attribute field beginning with T_ represents the upper soil attribute (0-30cm), and the attribute field beginning with S_ represents the lower soil attribute (30-100cm) (FAO 2009).This data can provide model input parameters for earth system modelers, and agricultural perspectives can be used to study eco-agricultural zoning, food security and climate change.

Geocryological regionalization and classification map of the frozen soil in China (1:10,000,000) (2000)

These data are digitized for the Geocryological Regionalization and Classification Map of the Frozen Soil in China (1:10 million) (Guoqing Qiu et al., 2000; Youwu Zhou et al., 2000), adopting a geocryological regionalization and classification dual series system. The geocryological regionalization system and classification system are used on the same map to reflect the commonality and individuality of the formation and distribution of frozen soil at each level. The geocryological regionalization system consists of three regions of frozen soil: (1) the frozen soil region of eastern China; (2) the frozen soil region of northwestern China; and (3) the frozen soil region of southwestern China (Tibetan Plateau). Based on the three large regions, 16 regions and several subregions are further divided. In the division of the geocryological boundary in the frozen soil area, the boundary between major regions I and III mainly consults the results of Bingyuan Li (1987). The boundary between major regions II and III is the northern boundary of the Tibetan Plateau, which is the Kunlun Mountains-Altun Mountains-Northern Qilian Mountains and the piedmont line. The boundary between major regions I and II is in the area of Helan Mountain-Langshan Mountain. The boundary of the secondary region is divided by the geomorphological conditions in regions II and III. However, in region I, it is mainly divided by the ratio of the annual temperature range A to the annual mean temperature T, and the frozen depths of various regions are taken into consideration. The classification system is divided into 8 types based on the continuity of frozen soil, the time of existence of frozen soil and the seasonal frozen depth. The various classifications of boundaries are mainly taken from the "Map of Snow, Ice and Frozen Ground in China" (1:4 million) (Yafeng Shi et al., 1988) and consult some new materials, whereas the seasonal frozen soil boundary is mainly based on the weather station data. The definitions of each classification are as follows: (1) Large permafrost: the continuous coefficient is 90%-70%; (2) Large-island permafrost: the continuous coefficient is 70%-30%; (3) Sparse island-shaped permafrost: the continuous coefficient is <30%; (4) Permafrost in the mountains; (5) Medium-season seasonal frozen soil: the maximum seasonal frozen depth that can be reached is >1 m; (6) Shallow seasonal frozen soil: the maximum seasonal frozen depth that can be reached is <1 m; (7) Short-term frozen soil: less than one month of storage time; and (8) Nonfrozen soil. According to the data, China's permafrost areas sum to approximately 2.19 × 106 km², accounting for 22.83% of China's territory. Among those areas, the mountain permafrost is found over 0.42×106 km2, which is 4.39% of the territory of China. The seasonal frozen soil area is approximately 4.76×106 km², accounting for 49.6% of China's territory, and the instantaneous frozen soil area is approximately 1.86×106 km², i.e., 19.33% of China's territory. For more information, please see the references (Youwu Zhou et al., 2000).