English | Chinese
On August 19, 2018, the wetland sample in Qumali County, located in the source area of the Yangtze River, was aerially photographed by DJI Elf 4 UAV. A total of 31 routes were set up, flying at a height of 100 m, and the overlap of adjacent photographs was not less than 70%. A total of 1551 aerial photographs were obtained and stored in two folders named "Drone Photoes Part1" and "Drone Photoes Part2".
Qinghai Tibet Plateau is the largest permafrost area in the world. At present, some permafrost distribution maps have been compiled. However, due to the limited data sources, unclear standards, insufficient verification and lack of high-quality spatial data sets, there is great uncertainty in drawing Permafrost Distribution Maps on TP. Based on the improved medium resolution imaging spectrometer (MODIS) surface temperature (LSTS) model of 1 km clear sky mod11a2 (Terra MODIS) and myd11a2 (Aqua MODIS) product (reprocessing version 5) in 2003-2012, the data set simulates the distribution of permafrost and generates the permafrost map of Qinghai Tibet Plateau. The map was verified by field observation, soil moisture content and bulk density. Permafrost attributes mainly include: seasonally frozen ground, permafrost and unfrozen ground. The data set provides more detailed data of Permafrost Distribution and basic data for the study of permafrost in the Qinghai Tibet Plateau.
The data is the reservoir distribution dataset of the north slope of Tianshan River Basin, which is comprehensively prepared by using topographic map and remote sensing image. The scale is 250000, and the projection is latitude and longitude. The data includes spatial data and attribute data, and the attribute field is Name (reservoir name), reflecting the reservoir distribution status of River Basin in the northern foot of Tianshan Mountain around 2000.
The data is the railway distribution map of the north slope of Tianshan River Basin, with a scale of 25000 and the projection is longitude and latitude. the data includes spatial data and attribute data, and the attribute field is code (railway code).
The dataset is the HWSD soil texture dataset in the north slope of the Tianshan River Basin. The data comes from the Harmonized World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and the Vienna International Institute for Applied Systems (IIASA). Version 1.1 was released on March 26, 2009. The data resolution is 1km. The soil classification system used is mainly FAO-90. The main fields of the soil attribute table include: SU_SYM90 (soil name in FAO90 soil classification system) SU_SYM85 (FAO85 classification) T_TEXTURE (top soil texture) DRAINAGE (19.5); ROOTS: String (depth classification of obstacles to the bottom of the soil); SWR: String (soil moisture characteristics); ADD_PROP: Real (a specific soil type related to agricultural use in the soil unit); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA soil texture classification); T_REF_BULK: Real (soil bulk density); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cation exchange capacity of cohesive layer soil); T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field beginning with T_ indicates the upper soil attribute (0-30cm), and the attribute field beginning with S_ indicates the lower soil attribute (30-100cm) (FAO 2009). The data can provide model input parameters for modelers of the Earth system, and the agricultural perspective can be used to study eco-agricultural zoning, food security, and climate change.
The data is 100,000 desert distribution map over the north_slope_of_Tianshan River Basin. This data uses 2000 TM image as data source to interpret, extract and revise. Remote sensing and geographic information system technology are combined with the mapping requirements of 1: 100,000 scale to carry out thematic mapping of deserts, sands and gravelly Gobi. Data attribute table: area (area), perimeter (perimeter), ashm_ (sequence code), class (desert code) and ashm_id (desert code), of which the desert code is as follows: mobile sand 2341010, semi-mobile sand 2341020, semi-fixed sand 2341030, Gobi desert 2342000 and saline-alkali land 2343000.
This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.
In the previous project, three different types of desert investigation and observation sites in the lower reaches of Heihe River were set up. Different kinds of desert plants with the same average growth and size as the observation site were selected for the above ground biomass and underground biomass total root survey. The dry weight was the dry weight at 80 ℃, and the root shoot ratio was the dry weight ratio of the underground biomass to the aboveground biomass. Species: Elaeagnus angustifolia, red sand, black fruit wolfberry, bubble thorn, bitter beans, Peganum, Tamarix and so on.
1、 Data Description: the data includes the observation data of groundwater level in the delta area of hulugou small watershed from July 24, 2014 to September 11, 2014, with the monitoring frequency of 1H / time. 2、 Sampling location: the groundwater level observation point is located at the top of the alluvial proluvial fan in front of the delta mountain, with the coordinates of 99 ° 52'45.38 "E, 38 ° 15'21.27" n.
The EC150 open circuit eddy covariance observation system was set up in the typical Populus euphratica community near ulantuge of Ejina oasis in the lower reaches of Heihe River. The water and heat fluxes of Populus euphratica community from July 2013 to September 2014 were systematically observed.
I. Overview The Yellow River is the second longest river in our country. The problem of the Yellow River's sediment has attracted the attention of people all over the world. Based on the vector map of the 14 million rivers in China as a base map, the upper reaches of the Yellow River basin were cut out. The vector map of the river is a key element for extracting the boundary of the basin by using the topographic map, and it is also a key element for flood evolution and sediment evolution. Ⅱ. Data processing description Using the national vector map of the 14 million rivers as the data source, it is cut out by using the boundary of the upper reaches of the Yellow River. Ⅲ. Data content description The map is stored in ArcGIS, .shp files, including vector diagrams of the main and tributaries from the source area of the Yellow River to Toudaoguai. Ⅳ. Data usage description The vector map of the river is a key element for extracting the boundary of the watershed by using the topographic map, and it is also a key element for flood evolution and sediment evolution.
1. data description Soil temperature monitoring in typical soil profile of hongnigou is divided into seven layers, with depth distribution of 20cm, 40cm, 60cm, 80cm, 120cm, 160cm and 230cm.The frequency of observation is 1 time /60 minutes.The time range of observation data is from August 25, 2013 to May 1, 2014. 2. Sampling location The soil temperature monitoring point of the typical soil profile in the small basin of cucurbitou was set in the middle and lower part of the red mud ditch, and its geographical coordinates were 99 ° 52 '25.98 "E, 38 ° 15' 36.11" N. 3. Test method Soil Temperature was observed using HOBO Pendant® Temperature/Light Data Logger 64k-ua-002-64 Temperature recorder.
Firefox
Chrome
Contact Support
Links
Help
Follow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn