Potassium transporter in ammopiptanthus mongolicus (2015-2016)

A typical Shaker type potassium ion absorption channel gene AmKAT1 was cloned from the leaves of Ammopiptanthus mongolicus. Electrophysiological studies of AmKAT1 show that AmKAT1 is a K+ absorption channel regulated by potassium ion concentration. the system can only input K+ into guard cells when the extracellular potassium ion concentration is high (above 10 mmol/L). This distinctive feature has important physiological significance for xerophytes such as Ammopiptanthus mongolicus: under the condition of low concentration of extracellular potassium ions (no matter how high the concentration of sodium ions), AmKAT1 is difficult to open, potassium ions cannot enter guard cells, the guard cells will not absorb water and expand, and stomata will be difficult to open, thus reducing the transpiration and loss of water in Ammopiptanthus mongolicus and enhancing the viability of Ammopiptanthus mongolicus in arid environment. We have further studied the mechanism of extracellular potassium ion regulating the activity of AmKAT1 and found that at least two sites in AmKAT1 are involved in potassium ion induction, and now one site has been determined to be located in the channel pore region. In addition, we cloned a guard cell export-oriented K+ channel AmGORK and a slow anion channel AmSLAC1. Fluorescence quantitative PCR results showed that AmGORK was mainly expressed in the upper part of the ground, and its transcription level was affected by PEG simulated water stress, ABA, NaCl and osmotic stress treatments to varying degrees. Electrophysiological studies in xenogeneic system of Xenopus laevis oocytes show that AmGORK channel of Mongolian Ammopiptanthus mongolicus guard cells can mediate efficient efflux of K+ when membrane potential is depolarized. The activation of this channel has typical voltage dependence and potassium ion concentration dependence, and is inhibited by potassium ion channel inhibitors TEA and Ba2+; In addition, the activity of AmGORK is regulated by extracellular pH, but not by extracellular calcium concentration. These results show that although Ammopiptanthus mongolicus is an ancient drought-resistant leguminous shrub originated millions of years ago, it is highly similar to the existing common model plant Arabidopsis thaliana in the stomatal closure mechanism dominated by K+. These results provide evidence to preliminarily reveal the functional conservatism of GORK-like stomatal regulatory channels in different species and long-term evolution.

Simulation results of eco hydrological model in the middle and lower reaches of Heihe river v1.0 (2001-2012)

This project use distributed HEIFLOW Ecological hydrology model (Hydrological - Ecological Integrated watershed - scale FLOW model) of heihe river middle and lower reaches of the eco Hydrological process simulation.The model USES the dynamic land use function, and adopts the land use data of the three phases of 2000, 2007 and 2011 provided by hu xiaoli et al. The space-time range and accuracy of simulation are as follows: Simulation period: 2000-2012, of which 2000 is the model warm-up period Analog step size: day by day Simulation space range: the middle and lower reaches of heihe river, model area 90589 square kilometers Spatial accuracy of the simulation: 1km×1km grid was used on both the surface and underground, and there were 90589 hydrological response units on the surface.Underground is divided into 5 layers, each layer 90589 mobile grid The data set of HEIFLOW model simulation results includes the following variables: (1) precipitation (unit: mm/month) (2) observed values of main outbound runoff in the upper reaches of heihe river (unit: m3 / s) (3) evapotranspiration (unit: mm/month) (4) soil infiltration amount (unit: mm/month) (5) surface yield flow (unit: mm/month) (6) shallow groundwater head (unit: m) (7) groundwater evaporation (unit: m3 / month) (8) supply of shallow groundwater (unit: m3 / month) (9) groundwater exposure (unit: m3 / month) (10) river-groundwater exchange (unit: m3 / month) (11) simulated river flow value of four hydrological stations of heihe main stream (gaoya, zhengyi gorge, senmaying, langxin mountain) (unit: cubic meter/second) The first two variables above are model-driven data, and the rest are model simulation quantities.The time range of all variables is 2001-2012, and the time scale is month.The spatial distributed data precision is 1km×1km, and the data format is tif. In the above variables, if the negative value is encountered, it represents the groundwater excretion (such as groundwater evaporation, groundwater exposure, groundwater recharge channel, etc.).If groundwater depth is required, the groundwater head data can be subtracted from the surface elevation data of the model. In some areas, the groundwater head may be higher than the surface, indicating the presence of groundwater exposure. In addition, the dataset provides: Middle and downstream model modeling scope (format:.shp) Surface elevation of the middle and downstream model (in the format of. Tif) All the above data are in the frame of WGS_1984_UTM_Zone_47N. Take heiflow_v1_et_2001m01.tif as an example to illustrate the naming rules of data files: HEIFLOW: model name V1: data set version 1.0 ET: variable name 2001M01: January 2000, where M represents month