China meteorological assimilation datasets for the SWAT model - soil temperature version 1.0 (2009-2013)

CMADS (The China Meteorological Assimilation Driving Datasets for The SWAT model) The soil temperature component (hereinafter referred to as cmads-st) USES The China Meteorological Administration Land Data Assimilation System [CLDAS] to force The common Land surface model3.5 [CLM3.5]) (Community Land model, numerical simulation of Land surface, circulation 10 spin - up simulation, get basic stability model initial field, and obtain high space-time resolution of soil temperature data sets, eventually hierarchical data model is utilized to extract, quality control, a nested loop, re-sampling, and a variety of technologies such as bilinear interpolation method is finally established. Cmads-st series data set space covers the whole east Asia (0 ° n-65 ° N, 60 ° e-160 ° E), the spatial resolution is respectively cmads-st V1.0 version: 1/3 °, cmads-st V1.1 version: 1/4 °, cmads-st V1.2 version: 1/8 ° and cmads-st V1.3 version:The above resolutions are daily (the basic resolution of the soil temperature component output in CLM3.5 mode is 1/16°, which ensures the highest resolution of the cmads-st data set is 1/16°). The time scale is 2009-2013.The data set published on this page is the cmads-st V1.0 data set (spatial resolution :1/3°).Temporal resolution: daily.Space coverage: east Asia (0 ° n-65 ° N, 60 ° e-160 ° E).Number of stations: 58,500.Supply factors: the average daily soil temperature of 10 layers (the depth of node hierarchy is in order: the first layer :0.00710063521m; the second layer :0.0279249996m; the third layer :0.0622585751m; the fourth layer :0.118865065m; the fifth layer :0.2121934m; the sixth layer :0.3660658m; the seventh layer :0.619758487m; the eighth layer :1.03802705m; the ninth layer :1.72763526m;Floor 10 :2.8646071m).Provide data format: TXT. The path of the cmads-st V1.0 soil temperature data set is: CMADS - ST - V1.0\2009 \ layer1 V1.0\2009 \ layer10 to CMADS - ST CMADS - ST - V1.0\2010 \ layer1 V1.0\2010 \ layer10 to CMADS - ST CMADS - ST - V1.0\2011 \ layer1 V1.0\2011 \ layer10 to CMADS - ST CMADS - ST - V1.0\2012 \ layer1 V1.0\2012 \ layer10 to CMADS - ST CMADS - ST - V1.0\2013 \ layer1 V1.0\2013 \ layer10 to CMADS - ST Cmads-st V1.0 subset file path and file name description Where, daily soil temperature (ten layers) is shown in layer1-layer10\.Are located in the following directories (take 2009 as an example): \2009\layer1\ 2009 layer1 (0.00710063521m) soil temperature directory \2009\layer2\ 2009 layer2 (0.0279249996m) soil temperature directory \2009\layer3\ 2009 layer3 (0.0622585751m) soil temperature catalogue \2009\layer4\ 2009 layer4 (0.118865065m) soil temperature catalogue \2009\layer5\ 2009 layer5 (0.2121934m) soil temperature catalogue \2009\layer6\ 2009 layer6 (0.3660658m) soil temperature catalogue \2009\layer7\ 2009 layer7 (0.619758487m) soil temperature directory \2009\layer8\ 2009 layer8 (1.03802705m) soil temperature catalogue \2009\layer9\ 2009 layer9 (1.72763526m) soil temperature catalogue \2009\layer10\ 2009 10th layer (2.8646071m) soil temperature catalogue

Data set of plant physiological indexes and soil water, salt and nutrient in the lower reaches of Tarim River (2000-2006)

In the ecosystem, soil and vegetation are two interdependent factors. Plants affect soil and soil restricts vegetation. On the one hand, there are a lot of nutrients such as carbon, nitrogen and phosphorus in the soil. On the other hand, the availability of soil nutrients plays a key role in the growth and development of plants, directly affecting the composition and physiological activity of plant communities, and determining the structure, function and productivity level of ecosystems. Soil moisture content (or soil moisture content): In the 9 sections from Daxihaizi to taitema lake in the lower reaches of Tarim River, plant sample plots are set in the direction perpendicular to the river channel according to the arrangement of groundwater level monitoring wells. Dig one soil profile in each sample plot, collect one soil sample from 0-5 cm, 5-15 cm, 15-30 cm, 30-50 cm, 50-80 cm, 80-120 cm and 120-170cm soil layers from bottom to top in each profile layer, each soil sample is formed by multi-point sampling and mixing of corresponding soil layers, each soil layer uses aluminum boxes to collect soil samples, weighs wet weight on site, and measures soil moisture content (or soil moisture content) by drying method. Soil nutrient: the mixed soil sample is used for determining soil nutrient after removing plant root system, gravel and other impurities, air-drying indoors and sieving. Organic matter is heated by potassium dichromate, total nitrogen is treated by semi-micro-Kjeldahl method, total phosphorus is treated by sulfuric acid-perchloric acid-molybdenum antimony anti-colorimetric method, total potassium is treated by hydrofluoric acid-perchloric acid-flame photometer method, effective nitrogen is treated by alkaline hydrolysis diffusion method, effective phosphorus is treated by sodium bicarbonate leaching-molybdenum antimony anti-colorimetric method, effective potassium is treated by ammonium acetate leaching-flame photometer method, PH and conductivity are measured by acidimeter and conductivity meter respectively (water to soil ratio is 5: 1). Soil water-soluble total salt was determined by in-situ salinity meter. Drought stress is the most common form of plant adversity and is also the main factor affecting plant growth and development. Plant organs will undergo membrane lipid peroxidation under adverse circumstances, thus accumulating malondialdehyde (MDA), the final decomposition product of membrane lipid peroxide. MDA content is an important indicator reflecting the strength of membrane lipid peroxidation and the damage degree of plasma membrane, and is also an important parameter reflecting the damage of water stress to plants. At the same time, under adverse conditions, the increased metabolism of reactive oxygen species in plants will lead to the accumulation of reactive oxygen species or other peroxide radicals, thus damaging cell membranes. Superoxide dismutase (SOD) and peroxidase (POD) in plants can remove excess active oxygen in plants under drought and other adversities, maintain the metabolic balance of active oxygen, protect the structure of the membrane, and finally enhance the resistance of plants to adversities. The analysis samples take Populus euphratica, Tamarix chinensis and Phragmites communis as research objects. According to the location of groundwater monitoring wells, six sample plots are set up starting from the riverside, with an interval of 50 m between each sample plot, which are sample plots 1, 2, 3, 4, 5 and 6 in turn. Fresh leaves of plants are collected, stored at low temperature, and pretreated (dried or frozen) on the same day. PROline (Pro), cell membrane system protective enzymes superoxide dismutase (SOD) and peroxidase (POD) were tested indoors. Preparation of enzyme solution: weigh 0.5g of fresh material and add 4.5mL pH7.8 with ph 7.8. The materials were homogenized in a pre-frozen mortar, which was placed in an ice bath. Centrifuge at 10000 r/min for 15 min. The supernatant was used for determination of superoxide dismutase, peroxidase and malondialdehyde (MDA). PRO determination: put 0.03 g of material into a 20 mL large test tube, add 10mL ammonia-free distilled water, seal it, put it in a boiling water bath for 30min, cool it, filter, filtrate 5 mL+ ninhydrin 5 mL, develop color in boiling water for 60min, and extract with toluene. The extract was colorized with Shimadzu UV-265 UV spectrophotometer at 515 nm. SOD activity was measured by NBT photoreduction. The order of sample addition for enzyme reaction system is: pH 7.8 PBS 2.4mL+ riboflavin 0.2 mL+ methionine 0.2 mL+EDTA0.1 mL+ enzyme solution 0.1 mL+NBT0.2 mL. Then the test tube was reacted under 40001ux light for 20 min, and photochemical reduction was carried out. SOD activity was measured at 650 nm wavelength by UV-265 ultraviolet spectrophotometer. POD activity determination: the reaction mixture was 50 ml PBS with pH 6.0+28 μ L guaiacol+19 UL30% H2O2. 2 mL of reaction mixture +1 mL of enzyme solution, immediately start timing, reading every 1 min, reading at 470 nm. Determination of chlorophyll: ethanol acetone mixed solution method. After cutting the leaves, the mixed solution of 0.2 g and acetone: absolute ethanol = 1: 1 was weighed as the extraction solution. After extracting in the dark for 24 h, the leaves turned white and chlorophyll was dissolved in the extraction solution. The OD value of chlorophyll was measured by spectrophotometer at 652nm. Determination method of soluble sugar: phenol sulfate method is adopted. (1) The standard curve is made by taking 11 20 ml graduated test tubes, numbering them from 0 to 10 points, and adding solution and water according to Table 1 respectively. Then add 1 ml of 9% phenol solution to the test tube in sequence, shake it evenly, then add 5 ml of concentrated sulfuric acid from the front of the tube for 5 ~ 20 s, the total volume of the colorimetric solution is 8 ml, and leave it at constant temperature for 30 minutes for color development. Then, with blank as control, colorimetric determination was carried out at 485 nm wavelength. With sugar as abscissa and optical density as ordinate, a standard curve was drawn and the equation of the standard curve was obtained. (2) Extraction of soluble sugar: fresh plant leaves are taken, surface dirt is wiped clean, cut and mixed evenly, 0.1-0.3 g are weighed, 3 portions are respectively put into 3 calibration test tubes, 5-10 ml distilled water is added, plastic film is sealed, extraction is carried out in boiling water for 3O minutes, the extraction solution is filtered into a 25 ml volumetric flask, repeated flushing is carried out, and the volume is fixed to the calibration. (3) Absorb 0.5 g of sample solution into the test tube, add 1.5 ml of distilled water, and work out the content of soluble sugar in the same way as the standard curve. The amount of solution and water in each test tube Pipe number 0 1-2 3-4 5-6 7-8 9-10 1.100μg/L sugar solution 0.20 0.40 0.60 1.0 2. water/ml 2.0 1.8 1.6 1.4 1.2 1.0 3. Soluble sugar content/μ g 0 20 40 60 80 100 Determination of malondialdehyde: thiobarbituric acid method. Fresh leaves were cut to pieces, 0.5 g was weighed, 5% TCA5 ml was added, and the homogenate obtained after grinding was centrifuged at 3 000 r/rain for 10 rain. Take 2 ml supernatant, add 0.67% TBA 2 ml, mix, boil in 100 water bath for 30 rain, cool and centrifuge again. Using 0.67% TBA solution as blank, the OD values at 450, 532 and 600 nm were determined. Methods for analysis and testing of plant hormones (GA3, ABA, CK, IAA): 0.1 0.005 g plant samples were taken and ground in liquid nitrogen. 500μl methanol was extracted overnight at 4℃. Centrifuge the sample and freeze-dry the supernatant. 30μl10%% CH3CN dissolved the sample. 10μl of sample solution was analyzed by HPLC. The external standard method was used to quantify plant hormones. Standard plant hormones were purchased from sigma Company. See (Ruan Xiao, Wang Qiang, et al., 2000, Journal of Plant Physiology.26 (5), 402-406) for analysis methods.

MICLCover land cover map of the Heihe river basin (2000)

1 km land cover map of heihe river basin is ran youhua et al. (2009;2011) develop a subset of China's 1 km land cover map (MICLCover) incorporating multi-source local information.The MICLCover land cover map adopts the IGBP land cover classification system, based on the evidence theory, which integrates the 1:100,000 land use data of China in 2000, the vegetation pattern of China vegetation atlas (1:100,000), the 1:100,000 glacier distribution map of China, the 1:100,000 swamp wetland map of China and the land cover product of MODIS in 2001 (MOD12Q1).The verification results of MICLCover showed that the overall consistency of MICLCover and China's land use map reached 88.84% on the level of 7 categories. Among them, the consistency of cultivated land, city, wetland and water type reached more than 95%.Through visual comparison with the land cover data product of MODIS2001 and IGBPDISCover land cover map in three typical areas, MICLCover keeps the overall accuracy of China's land use map and increases the leaf attribute and leaf shape information of China's vegetation map, while reflecting more detailed local land cover details.Using the national forest resources survey data, the verification results in gansu, yunnan, zhejiang, heilongjiang and jilin provinces showed that the accuracy of forest types of MICLCover was significantly improved compared with that of MODIS land cover products.The forest type of MICLCover was verified with the forest resource survey data of qilian mountain national nature reserve administration of gansu province. The results showed that the accuracy of MICLCover forest type in this area was 82.94%. Anyhow, MICLCover land cover map while maintaining the overall precision of the Chinese land use data condition, supplement the vegetation map of China on vegetation types and vegetation season phase information, update the Chinese wetland figure, Chinese ice figure the latest information, the accuracy of China's land cover data is greatly improved, more general classification system, the data can provide higher precision for land surface process model of land cover information.