MODIS Snow cover product dataset in China (2000-2004)

The data set is from February 24, 2000 to December 31, 2004, with a resolution of 0.05 degrees, MODIS data, and the data format is .hdf. It can be opened with HDFView. The data quality is good. The missing dates are as follows: 2000 1 -54 132 219-230 303 2001 111 167-182 2002 079-086 099 105 2003 123 324 351-358 2004 219 349 The number after the year is the nth day of the year Pixel values ​​are as follows: 0: Snow-free land 1-100: Percent snow in cell 111: Night 252: Antarctica 253: Data not mapped 254: Open water (ocean) 255: Fill An example of file naming is as follows: Example: "MOD10C1.A2003121.004.2003142152431.hdf" Where: MOD = MODIS / Terra 2003 = Year of data acquisition 121 = Julian date of data acquisition (day 121) 004 = Version of data type (Version 4) 2003 = Year of production (2003) 142 = Julian date of production (day 142) 152431 = Hour / minute / second of production in GMT (15:24:31) The corner coordinates are: Corner Coordinates: Upper Left (70.0000000, 54.0000000) Lower Left (70.0000000, 3.0000000) Upper Right (138.0000000, 54.0000000) Lower Right (138.0000000, 3.0000000) Among them, Upper Left is the upper left corner, Lower Left is the lower left corner, Upper Right is the upper right corner, and Lower Right is the lower right corner. The number of data rows and columns is 1360, 1020 Geographical latitude and longitude coordinates, the specific information is as follows: Coordinate System is: GEOGCS ["Unknown datum based upon the Clarke 1866 ellipsoid",     DATUM ["Not specified (based on Clarke 1866 spheroid)",         SPHEROID ["Clarke 1866", 6378206.4,294.9786982139006,             AUTHORITY ["EPSG", "7008"]]],     PRIMEM ["Greenwich", 0],     UNIT ["degree", 0.0174532925199433]] Origin = (70.000000000000000, 54.000000000000000)

AMSR-E/aqua daily gridded brightness temperatures of China

This dataset includes passive microwave remote sensing brightness temperatures data for longitude and latitude projections and 0.25 degree resolution from 2002 to 2008 in China. 1. Data processing process: NSIDC produces AMSR-E gridded brightness temperature data by interpolating AMSR-E data (6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz) to the output grids from swath space using an Inverse Distance Squared (ID2) method. 2. Data format: Brightness temperature files: two-byte unsigned integers, little-endian byte order Time files: two-byte signed integers, little-endian byte order 3. Data naming: ID2rx-AMSRE-aayyyydddp.vnn.ccc (China-ID2r1-AMSRE-D.252002170A.v03.06V) ID2 Inverse Distance Squared r1 Resolution 1 swath input data AMSRE Identifies this an AMSR-E file D.25 Identifies this as a quarter degree file yyyy Four-digit year ddd Three-digit day of year p Pass direction (A = ascending, D = descending) vnn Gridded data version number (for example, v01, v02, v03) ccc AMSR-E channel indicator: numeric frequency (06, 10, 18, 23, 36, or 89) followed by polarization (H or V) 4. Cutting range: Corner Coordinates: Upper Left (60.0000000, 55.0000000) (60d 0'0.00 "E, 55d 0'0.00" N) Lower Left (60.0000000, 15.0000000) (60d 0'0.00 "E, 15d 0'0.00" N) Upper Right (140.0000000, 55.0000000) (140d 0'0.00 "E, 55d 0'0.00" N) Lower Right (140.0000000, 15.0000000) (140d 0'0.00 "E, 15d 0'0.00" N) Center (100.0000000, 35.0000000) (100d 0'0.00 "E, 35d 0'0.00" N) Origin = (60.000000000000000, 55.000000000000000) 5. Data projection: GEOGCS ["WGS 84", DATUM ["WGS_1984", SPHEROID ["WGS 84", 6378137,298.257223563, AUTHORITY ["EPSG", "7030"]], TOWGS84 [0,0,0,0,0,0,0], AUTHORITY ["EPSG", "6326"]], PRIMEM ["Greenwich", 0, AUTHORITY ["EPSG", "8901"]], UNIT ["degree", 0.0174532925199433, AUTHORITY ["EPSG", "9108"]], AUTHORITY ["EPSG", "4326"]]

Long term vegetation index dataset of the Yellow River upstream – Spot vegetation (1998-2011)

I. Overview The long-term sequence China Vegetation Index dataset is mainly for the normalized vegetation index (NDVI), based on four bands synthesized every 10 days from 1 April 1998 to 31 December 2011 with a spatial resolution of 1 km. Spectral reflectance and 10-day maximized NDVI dataset. Ⅱ. Data processing description The VEGETATION sensor was launched by SPOT-4 in March 1998, and has received SP0T VGT data for global vegetation coverage observation since April 1998. It has a very complete and efficient image ground processing mechanism system. The VEGETATION data is mainly received by the Kiruna ground station in Sweden. The image quality monitoring center in Toulouse, France is responsible for image quality and provides related parameters (such as calibration coefficients). Finally, the image processing and archiving center of VITO Institute in Belgium Global VEGETATION data archiving and user orders. Among them, VGT-P (prototype) data products mainly provide scientific researchers with high-quality physical quantity prototype data in order to facilitate their research and development of algorithms and application models. The data undergoes strict systematic error correction and resampling into a longitude and latitude network projection, the pixel resolution is lkm, and the pixel brightness value is the reflectivity of the ground features on the top layer of the atmosphere. In addition to providing four bands of raw data, relevant auxiliary parameters such as atmospheric conditions, system information (solar zenith angle, azimuth, field of view, and reception time) and terrain data are also provided according to user needs. VGT-S (synthesis) products provide atmospheric-corrected surface reflectance data, and use multi-band synthesis techniques to obtain a normalized vegetation index (w) data set with lkm resolution. VGI-S products include the spectral reflectance and NDVI data set (s1) of four bands synthesized daily, the spectral reflectance of four bands synthesized every 10 days, and the maximum NDVI data set (S10) every 10 days to reduce cloud and The impact of BRDF, while S10 was also resampled into 4km resolution (S10.4) and 8km resolution (S10.8) datasets. VGT-S products are widely used for their high time resolution. This data set contains the spectral reflectance of four bands synthesized every 10 days and the 10-day maximized NDVI data set (S10). The pre-processing of SPOT source data includes atmospheric correction, radiation correction, and geometric correction. NDVI data with a maximum of 10 days of synthesis is generated, and the values ​​of -1 to -0.1 are set to -0.1, and then formula YDN = (JNDVI +0.1) /0.004 Convert to a YDN value from 0 to 250. Ⅲ. Data content description The long-term sequence China Vegetation Index dataset is mainly for the normalized vegetation index (NDVI), based on four bands synthesized every 10 days from 1 April 1998 to 31 December 2011 with a spatial resolution of 1 km. Spectral reflectance and 10-day maximized NDVI dataset. The SPOT-VEGETATION-NDVI data set contains .zip compressed files with time resolution from April 1, 1998 to December 31, 2011. After decompression, it is an ESRI-GRID file with a scene every 10 days. The SPO-VEGETATION-NDVI data set naming rules are: v-yymmdd, where v is the abbreviation of vegetation, yymmdd represents the date of the file, and is the main identifier that distinguishes other files. Ⅳ. Data usage description An important feature of the Vegetation Index product is that it can be converted into leaf crown biophysical parameters. Vegetation index (VI) also plays an "intermediate variable" in the acquisition of vegetation biophysical parameters (such as foliar index LAI, green shade, fAPAR, etc.). The relationship between vegetation indices and vegetation biophysical parameters is currently being studied using globally representative ground, aircraft and satellite observation datasets. These data can be used to evaluate the performance of the VI algorithm before satellite launch, and also provide the conversion coefficient between the vegetation index product and the biophysical characteristics of the leaf crown. The use of biophysical data is part of the Vegetation Index Verification Program. Vegetation index products will play a major role in several Earth Observation System (EOS) studies and are also part of global and regional biosphere model products in recent years.

Permafrost map of China and its neighbors based on Circum-Arctic Map of Permafrost and Ground Ice Conditions (2001)

Field description: Num_code (Frozen soil attribute code) Combo (Permafrost properties) extent (Extent of frozen ground) content (Ice content) Attributes comparison are as follows: (1) Comparison table of frozen soil properties: 0 (No information) 1 - chf (Continuous permafrost extent with high ground ice content and thick overburden) 2 - dhf (Discontinuous permafrost extent with high ground ice content and thick overburden) 3 - shf (Sporadic permafrost extent with high ground ice content and thick overburden) 4 - ihf (Isolated patches of permafrost extent with high ground ice content and thick overburden) 5 - cmf (Continuous permafrost extent with medium ground ice content and thick overburden) 6 - dmf (Discontinuous permafrost extent with medium ground ice content and thick overburden) 7 - smf (Sporadic permafrost extent with medium ground ice content and thick overburden) 8 - imf (Isolated patches of permafrost extent with medium ground ice content and thick overburden) 9 - clf (Continuous permafrost extent with low ground ice content and thick overburden) 10 - dlf (Discontinuous permafrost extent with low ground ice content and thick overburden) 11 - slf (Sporadic permafrost extent with low ground ice content and thick overburden) 12 - ilf (Isolated patches of permafrost extent with low ground ice content and thick overburden) 13 - chr (Continuous permafrost extent with high ground ice content and thin overburden and exposed bedrock) 14 - dhr (Discontinuous permafrost extent with high ground ice content and thin overburden and exposed bedrock) 15 - shr (Sporadic permafrost extent with high ground ice content and thin overburden and exposed bedrock) 16 - ihr (Isolated patches of permafrost extent with high ground ice content and thin overburden and exposed bedrock) 17 - clr (Continuous permafrost extent with low ground ice content and thin overburden and exposed bedrock) 18 - dlr (Discontinuous permafrost extent with low ground ice content and thin overburden and exposed bedrock) 19 - slr (Sporadic permafrost extent with low ground ice content and thin overburden and exposed bedrock) 20 - ilr (Isolated patches of permafrost extent with low ground ice content and thin overburden and exposed bedrock) 21 - g (Glaciers) 22 - r (Relict permafrost) 23 - l (Inland lakes) 24 - o (Ocean/inland seas) 25 - ld (Land) (2) Comparison table of frozen soil scope c = continuous (90-100%) d = discontinuous (50- 90%) s = sporadic (10- 50%) i = isolated patches (0 - 10%) (3) Ice content comparison table h = high (>20% for "f" landform codes) (>10% for "r" landform codes) m = medium (10-20%) l = low (0-10%)