HiWATER:Dataset of hydrometeorological observation network (eddy covariance system of barren-land station, 2013)

This dataset contains the flux measurements from the barren-land station eddy covariance system (EC) in the lower reaches of the Heihe hydrometeorological observation network from 10 July to 31 December, 2013. The site (101.133° E, 41.999° N) was located in the barren-land surface, Ejin Banner in Inner Mongolia. The elevation is 878 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.2 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Due to the malfunction of CO2/H2O gas analyzer and CF card storage problem, data during 17 July to 13 September and 6 December to 11 December were missing. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

HiWATER:The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-Dataset of flux observation matrix (No.10 eddy covariance system)

This dataset contains the flux measurements from site No.10 eddy covariance system (EC) in the flux observation matrix from 4 June to 17 September, 2012. The site (100.39572° E, 38.87567° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1534.73 m. The EC was installed at a height of 4.8 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.17 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

Observational data of soil hydrological heterogeneity in the upper reaches of the Heihe River (2012-2014)

Soil bulk density, porosity, water content, water characteristic curve, saturated hydraulic conductivity, particle analysis, infiltration rate, and sampling point location information in the upper reaches of the Heihe River Basin. 1. The data is for 2014 supplementary sampling for 2012, using the ring knife to take the original soil; 2. The soil bulk density is the dry bulk density of the soil and is measured by the drying method. The original ring-shaped soil sample collected in the field was thermostated at 105 ° C for 24 hours in an oven, and the soil dry weight was divided by the soil volume (100 cubic centimeters) , unit: g/cm 3 . 3. Soil porosity is obtained according to the relationship between soil bulk density and soil porosity; 4. Soil infiltration analysis data set, the data is the field experimental measurement data from 2013 to 2014. 5. The infiltration data is measured by “MINI DISK PORTABLE TENSION INFILTROMETER”, and the approximate saturated hydraulic conductivity under a certain negative pressure is obtained. 6. Soil particle size data was measured at the Grain Granulation Laboratory of the Key Laboratory of the Ministry of Education of Lanzhou University. The measuring instrument is a Malvern laser particle size analyzer MS2000. 7. The saturated hydraulic conductivity is measured according to the enamel hair self-made instrument of Yi Yanli (2009). The Marioot bottle was used to maintain the head during the experiment; at the same time, the Ks measured at the time was converted to the Ks value at 10 °C for analysis and calculation. 8. Soil water content data is measured using ECH2O, including 5 layers of soil water content and soil temperature. 9. The water characteristic curve is measured by the centrifuge method: the undisturbed soil of the ring cutter collected in the field is placed in a centrifuge, and each of the speeds is measured at 0, 310, 980, 1700, 2190, 2770, 3100, 5370, 6930, 8200, 11600. The secondary rotor weight is obtained.

HiWATER: 30m month compositing Fraction Vegetation Cover (FVC) product of Heihe River Basin

30m month compositing Fraction Vegetation Cover (FVC) data set of Heihe River Basin provides the results of monthly FVC synthesis in 2011-2014. The data constructs multi-angle observation data sets by using China's domestic satellite HJ/CCD data with high temporal resolution (2 days after networking) and spatial resolution (30m) , and divides the country into different vegetation divisions and land types. The conversion coefficients of NDVI and FVC are calculated respectively, and use the calculated conversion coefficient lookup table and monthly compositing NDVI to produce the regional monthly compositing FVC products. The 30m month compositing FVC product in the Heihe River Basin can directly obtain the vegetation coverage ratio through high-resolution data, and mitigate the influence of low-resolution data heterogeneity; in addition, selecting the typical period of vegetation growth change, by fitting the vegetation index of each pixel time series to obtain the growth curve parameters that correspond to each pixel; then the land use map and the vegetation classification map are combined to find the representative uniform pixels of the region for training the conversion coefficients of the vegetation index. Compared with the ASTER reference FVC results, the 30m/month compositing FVC product in the Heihe River Basin is slightly higher than the ASTER reference result, but the overall deviation is not large, and the maximum value of the root mean square error (RMSE) of the product and the reference value is less than 0.175. In addition, compared with the ground survey data of Huailai experimental site in Hebei Province, the 30 m/month compositing FVC products generally reflect the seasonal variation of vegetation growth, and the deviation from the ground survey data is less than 0.1. At the same time, compared with the ground measurements of vegetation coverage in many watersheds in Northeast, North China and Southeast China, the overall error between the compositing FVC products and the ground measurements is less than 0.2. In all, the 30m/month compositing FVC data set of Heihe River Basin comprehensively utilizes multi-temporal and multi-angle remote sensing data to improve the estimation accuracy and time resolution of FVC parameter products, so as to better serve the application of remote sensing data products.