Monthly evapotranspiration dataset with 30m spatial resolution over oasis in the middle reaches of the Heihe River Basin Version 1.0 (2000-2013)

ET(Evapotranspiration)monitoring is essential for agricultural water management, regional water resources utilization planning, and socio-economic sustainable development.The limitations of the traditional monitoring ET method are mainly that large-area simultaneous observations cannot be made and can only be limited to observation points. Therefore, the cost of personnel and equipment is relatively high, and it is unable to provide ET data on the surface, nor to provide the ET data of different land use types and crop types. Quantitative monitoring of ET can be achieved by remote sensing. The characteristics of remote sensing information are that it can reflect both the macroscopic structural characteristics of the Earth's surface and the microscopic local differences. Monthly evapotranspiration datasets (2000-2013) with 30m spatial resolution over oasis in the Middle Reaches of Heihe River Basin Version 1.0 are based on multi-source remote sensing data. The latest ET Watch model is used to estimate the raster image data. Its temporal resolution is monthly and spatial resolution is 30 meters. The data cover the middle reaches of Zhangye oasis area in millimeters. The data types include month, quarter, and year data. The projection information of the data is as follows: Albers equivalent conical projection, Central meridian: 110 degrees, First secant: 25 degrees, Second secant: 47 degrees, Coordinate west deviation: 4000000 meters. The file naming rules are as follows: Monthly cumulative ET value file name: heihe-midoasis-30m_2013m01_eta.tif Among them, heihe indicates the Heihe River Basin, midoasis indicates the middle oasis area, 30m indicates the resolution is 30 meters, 2013 indicates 2013, m01 indicates January, eta indicates actual evapotranspiration data, and tif indicates that the data is in tif format; The ET value file for each season is named: heihe-midoasis-30m_2013s01_eta.tif Among them, heihe indicates the Heihe River Basin, midoasis indicates the middle oasis area, 30m indicates the resolution is 30 meters, 2013 indicates 2013, s01 indicates 1-3 months, for the first quarter, eta indicates actual evapotranspiration data, and tif indicates that the data is in tif format; The annual cumulative value file name: heihe-midoasis-30m_2013y_eta.tif Among them, heihe indicates the Heihe River Basin, midoasis indicates the middle oasis area, 30m indicates the resolution is 30 meters, 2013 indicates 2013, y indicates the year, eta indicates the actual evapotranspiration data, and tif indicates that the data is in tif format.

HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Huangcaogou station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Huangcaogou station between 7 June, 2013, and 31 December, 2013. The site (100.731° E, 38.003° N) was located on a cold grassland surface in the Huangcaogou village, E’bao town, Qilian County, Qinghai Province. The elevation is 3137 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45D; 5 m, north), wind speed and direction profile (03001; 10 m, north), air pressure (CS100; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (IRTC3; 6 m, south, vertically downward), soil heat flux (HFT3; 3 duplicates, -0.06 m), soil temperature profile (AV-10T; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (ECh2o-5; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The data of wind direction were missing during 12 June, 2013 and 24 September, 2013. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix(automatic meteorological station of No.9)

This dataset contains the automatic weather station (AWS) measurements from site No.9 in the flux observation matrix from 4 June to 17 September, 2012. The site (100.38546° E, 38.87239° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1543.34 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45AC; 5 m, towards north), rain gauge (TE525M; 10 m), wind speed (010C; 10 m, towards north), a four-component radiometer (CNR1; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04 m), soil moisture profile (CS616; -0.02, -0.04 m), and soil heat flux (HFP01; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), precipitation (rain, mm), wind speed (Ws_10 m, m/s), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, and Ts_4 cm, ℃), and soil moisture profile (Ms_2 cm and Ms_4 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix (cosmic-ray soil moisture)

This dataset includes the observational data that were collected by two sets of Cosmic-ray Soil Moisture Observation System (COSMOS), named crs_a and crs_b, which were installed near the Daman Superstation in the flux observation matrix from 1 June through 20 September 2012. The land cover in the footprint was maize crop, and the site was located with the cropland of the Daman Irrigation District, Zhangye, Gansu Province. Crs_a was located at 100.36975° E, 38.85385° N and 1557.16 m above sea level; Crs_b was located at 100.37225° E, 38.85557° N and 1557.16 m above sea level. The bottom of the probe was 0.5 m above the ground; the sampling interval was 1 hour. The raw COSMOS data include the following: battery (Batt, V), temperature (T, ℃), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), sample time of fast neutrons (N1ET, s), and sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Quality control Data were removed and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity was greater than 80% inside the probe box, (c) the counting data were not of one-hour duration and (d) then neutron count differed from the previous value by more than 20%. 2) Air pressure correction An air pressure correction was applied to the quality-controlled raw data according to the equation contained in the equipment manual. The procedure was previously described by Jiao et al. (2013) and Zreda et al. (2012). 3) Calibration After the quality control and corrections were applied, soil moisture was calculated using the equation in Desilets et al. (2010), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 must be calibrated using the in situ observed soil moisture within the footprint. This procedure was previously described by Jiao et al. (2013) and Zreda et al. (2012) 4) Computing the soil moisture Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation from the equipment manual. This procedure was previously described by Jiao et al, (2013) and Zreda et al. (2012) For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Zhu et al. (2015) (for data processing) in the Citation section.