HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-Dataset of flux observation matrix (NO.4 large aperture scintillometer) (2012)

This dataset contains the flux measurements from the large aperture scintillometer (LAS) at site No.4 in the flux observation matrix. There were two types of LASs at site No.4: German BLS450 and China zzlas. The observation periods were from 2 June to 22 September, 2012 and 11 June to 20 September, 2012, for the BLS450 and the zzlas, respectively. The north tower is placed with the receiver of BLS450 and the transmitter of zzlas, and the south tower is placed with the transmitter of BLS450 and the receiver of zzlas. The site (north: 100.379° E, 38.861° N; south: 100.369° E, 38.847° N) was located in the Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1552.75 m. The underlying surface between the two towers contains corn, greenhouse, and village. The effective height of the LASs was 33.45 m; the path length was 1854 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion (Cn2>1.01E-13). (2) Data were rejected when the demodulation signal was small (BLS450: Average X Intensity<1000, zzlas: Demod<-40 mv). (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS450 measurements. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

Dataset of cloud observations in Arctic Alaska (1999-2009)

This data set of cloud observations at a site in Arctic Alaska is based on the fusion of five cloud inversion products that are well known worldwide. The temporal coverage of the data is from 1999 to 2009, the temporal resolution is one hour, and there are 512 layers vertically with a vertical resolution of 45 m. The spatial coverage is one site in Arctic Alaska, with latitude and longitude coordinates of 71°19′22.8′′N, 156°36′32.4′′ W. The remote sensing cloud inversion data products include the following official products: the all-phase cloud characteristic products produced by the Atmospheric Radiation Measurement Program of the US Department of Energy adopting a parametric method for remote sensing inversion, the ice cloud and hybrid cloud feature products obtained from the US NOAA researchers Matt Shupe and Dave Turner based on cooperative remote sensing inversion (optimization method + parametric method), the hybrid cloud feature (optimization method) products produced by Zhien Wang of the University of Wyoming, USA, the ice cloud feature (parametric method) products produced by Min Deng of the University of Wyoming, USA, and the cloud optical thickness products produced by Qilong Min of the State University of New York at Albany adopting remote sensing inversion (optimization method). The variables of the remote sensing products include cloud water effective radius, cloud water content, cloud ice effective radius, cloud ice content, cloud optical thickness, and cloud water column content; the corresponding observed inversion error ranges are approximately 10-30%, 30-60%, 10-30%, 30-60%, 10-30% and 10-20%. The data files are in the NC format, and an NC file is stored every month.

WATER: Dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission in the Linze station foci experimental area (May 25, 2008)

The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Linze station foci experimental area on May 25, 2008. Observation items included: (1) soil moisture (0-5cm) measured once by the cutting ring method in the corner points of the 40 subplots of the west-east desert transit zone strip , three times in the corner points of the nine subplots of the north-south desert transit zone, once by the cutting ring and once by ML2X Soil Moisture Tachometer in the center points of nine subplots of the farmland quadrates. The preprocessed soil volumetric moisture data were archived as Excel files. (2) the surface radiative temperature by three handheld infrared thermometer (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute, and one from Institute of Geographic Sciences and Natural Resources, which were all calibrated) in the west-east and north-south desert transit zone strip (various times synchronizing with the airplane), and Wulidun farmland quadrates (repeated twice at intervals of 15m from east to west). There are 34 sample points in total and each was repeated three times synchronizing with the airplane. Photos were taken. Data were archived as Excel files. (3) maize BRDF once by ASD Spectroradiometer (350~2 500 nm) from BNU, the reference board (40% before Jun. 15 and 20% hereafter), two observation platforms of BNU make and one of Institute of Remote Sensing Applications make in Wulidun farmland. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance were archived as text files (.txt). See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.

HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Huazhaizi desert steppe station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Huazhaizi desert steppe station between 22 September, 2012, and 31 December, 2013. The site (100.319° E, 38.765° N) was located on a desert steppe surface in the Huazhaizi, which is near Zhangye city, Gansu Province. The elevation is 1731 m. There are two equipment in the site, and installed by Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (CAREERI) and Beijing Normal University (BNU), respectively. The installation heights and orientations of BNU were as follows: two infrared temperature sensors (SI-111; 2.65 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.2, -0.6, and -1 m), and soil moisture profile (ML2X; -0.04, -0.2 and -1 m). For the CAREERI installation: air temperature and humidity profile (HMP45C; 1, 1.99 and 2.99 m, north), wind speed profile (03102; 0.48, 0.98, 1.99 and 2.99 m, north), wind direction (03302; 4 m, north), air pressure (PTB210; in waterproof box), rain gauge (CTK-15PC; 0.7 m), four-component radiometer (CNR1; 2.5 m, south), soil temperature profile (107; -0.04, -0.1, -0.18, -0.26, -0.34, -0.42 and -0.5 m), and soil moisture profile (ML2X; -0.02, -0.1, -0.18, -0.26, -0.34, -0.42, -0.5, and -0.58 m, 3 duplicates in -0.02 m). The observations included the following: (1) infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_20 cm, Ts_60 cm and Ts_100 cm) (℃), and soil moisture (Ms_4 cm, Ms_20 cm and Ms_100 cm) (%). (2) air temperature and humidity (Ta_1 m, Ta_1.99 m and Ta_2.99 m; RH_1 m, RH_1.99 m and RH_2.99 m) (℃ and %, respectively), wind speed (Ws_0.48 m, Ws_0.98 m, Ws_1.99 m and Ws_2.99 m) (m/s), wind direction (WD_4 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil temperature (Ts_4 cm, Ts_10 cm, Ts_18 cm, Ts_26 cm, Ts_34 cm, Ts_42 cm and Ts_50 cm) (℃), and soil moisture (Ms_2 cm_1, Ms_2 cm_2, Ms_2 cm_3, Ms_10 cm, Ms_18 cm, Ms_26 cm, Ms_34 cm, Ms_42 cm, Ms_50 cm and Ms_58 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The BNU data were averaged over intervals of 10 min, The CAREERI data were averaged over intervals of 30 min. A total of 144 runs per day were recorded in BNU data and 48 records per day in CAREERI data. The BNU data during 30 June, 2013 and 26 July, 2013 were missing during the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

HiWATER: Dataset of measurements on channel flow in the midstream of the Heihe River Basin

The dataset includes channel flow measured at the second irrigation stage in spring (22 May, 2012), the third irrigation stage in spring (18 June, 2012) and the first irrigation stage in autumn (16 July, 2012). The time used in this dataset is in UTC+8 Time. 1.1 Objective of measurement Objective of measuring channel flow are to provide the conference data for irrigation water optimal allocation model according to obtain reality water volume measured at Dou channel and Mao channel. Data set also is used to reference data for other observations such as eddy, biophysical parameters. 1.2 Observation measures and principle Measures: flow meter named Flowatch, which is made in Switzerland, observation precision: 0.1m/s; and rule, observation of which is 1cm. Principle: Flowatch, which is mechanical-based, is used to compute the velocity of the fluid according to vanes speed. The flow of channels is computed by using observed flow velocity and channel sectional area calculated on the basis of channel engineer sectional parameters and water level. 1.3 Observation location and items Observation spots include Yingyi branch San dou (Liu She, Shang’er She, and Xia’er She of Shiqiao village), Si Dou (Qi She, Ba She, and Jiu She of Shiqiao village), and Wu Dou (Yi She of Shiqiao village) at Yingke irrigation district, and seven Mao channels branched from five star branch channel Si Dou San Nong. Observation time is described as followed: Second stage irrigation in summer: 2012-5-22: Si Dou, Yingyi branch channel: Jiu She (Shiqiao village) 2012-5-23: Si Dou, Yingyi branch channel: Ba She (Shiqiao village) 2012-5-24 to 2012-5-25: Si Dou, Yingyi branch channel: Qi She (Shiqiao village) 2012-5-26 to 2012-5-28: Wu Dou, Yingyi branch channel: Yi She (Shiqiao village) 2012-5-28 to 2012-5-29: San Dou, Yingyi branch channel: Xia’er She (Shiqiao village) 2012-5-29 to 2012-5-30: San Dou, Yingyi branch channel: Shang’er She (Shiqiao village) 2012-5-30 to 2012-6-2: San Dou, Yingyi branch channel: Liu She (Shiqiao village) 2012-6-6: Yi Mao, Er Mao, San Mao, Si Mao, and Wu Mao branched from Five star branch channel Si Dou San Nong: Five star village 2012-6-7: Liu Mao, and Qi Mao branched from Five star branch channel Si Dou San Nong: Five stars village Third stage irrigation in summer: 2012-6-18 to 2012-6-19: Si Dou, Yingyi branch channel: Jiu She (Shiqiao village) 2012-6-19 to 2012-6-20: Si Dou, Yingyi branch channel: Ba She (Shiqiao village) 2012-6-20 to 2012-6-21: Si Dou, Yingyi branch channel: Qi She (Shiqiao village) 2012-6-22 to 2012-6-24: Wu Dou, Yingyi branch channel: Yi She (Shiqiao village) 2012-6-24 to 2012-6-26: San Dou, Yingyi branch channel: Xia’er She (Shiqiao village) 2012-6-26 to 2012-6-27: San Dou, Yingyi branch channel: Shang’er She (Shiqiao village) 2012-6-27 to 2012-6-30: San Dou, Yingyi branch channel: Liu She (Shiqiao village) 2012-7-1 to 2012-7-2: Yi Mao, Er Mao, San Mao, Si Mao, Wu Mao, Liu Mao, and Qi Mao branched from Five star branch channel Si Dou San Nong: Five stars village First stage irrigation in Autumn: 2012-7-16 to 2012-7-18: Si Dou, Yingyi branch channel: Jiu She (Shiqiao village) 2012-7-18 to 2012-7-19: Si Dou, Yingyi branch channel: Ba She (Shiqiao village) 2012-7-19 to 2012-7-21: Si Dou, Yingyi branch channel: Qi She (Shiqiao village) 2012-7-21 to 2012-7-24: Wu Dou, Yingyi branch channel: Yi She (Shiqiao village) 2012-7-24 to 2012-7-25: San Dou, Yingyi branch channel: Xia’er She (Shiqiao village) 2012-7-25 to 2012-7-27: San Dou, Yingyi branch channel: Shang’er She (Shiqiao village) 2012-7-27 to 2012-7-31: San Dou, Yingyi branch channel: Liu She (Shiqiao village) 2012-7-27 to 2012-7-28: Yi Mao, Er Mao, San Mao, Si Mao, Wu Mao, Liu Mao, and Qi Mao branched from Five star branch channel Si Dou San Nong: Five stars village Second stage irrigation in Autumn: 2012-8-8 to 2012-8-9: Si Dou, Yingyi branch channel: Jiu She (Shiqiao village) 2012-8-9 to 2012-8-10: Si Dou, Yingyi branch channel: Ba She (Shiqiao village) 2012-8-10 to 2012-8-12: Si Dou, Yingyi branch channel: Qi She (Shiqiao village) 2012-8-13 to 2012-8-15: Wu Dou, Yingyi branch channel: Yi She (Shiqiao village) 2012-8-15 to 2012-8-17: San Dou, Yingyi branch channel: Xia’er She (Shiqiao village) 2012-8-17 to 2012-8-19: San Dou, Yingyi branch channel: Shang’er She (Shiqiao village) 2012-8-19 to 2012-8-22: San Dou, Yingyi branch channel: Liu She (Shiqiao village) 2012-8-24 to 2012-8-25: Yi Mao, Er Mao, San Mao, Si Mao, Wu Mao, Liu Mao, and Qi Mao branched from Five star branch channel Si Dou San Nong: Five stars village Observed items: average flow velocity of channel (m/s), water level of channel (m), water temperature (℃), engineer sectional parameters of channel (investigation). Average flow velocity and water level of channel are measured one time per hour when channel flow is stable. However, the two items are measured two times or more times when channel flow is unstable. 1.4 Data process Observed data is saved in excel sheet, types of which include channel flow velocity, channel sectional area, water level, and water temperature. Channel flow and irrigation water volume are calculated by using observed data according to data per-process approach.

Asian monsoon experiment on the Tibetan Plateau (GAME/Tibet) dataset for global energy water cycle (1997-1998)

The GAME/Tibet project conducted a short-term pre-intensive observing period (PIOP) at the Amdo station in the summer of 1997. From May to September 1998, five consecutive IOPs were scheduled, with approximately one month per IOP. More than 80 scientific workers from China, Japan and South Korea went to the Tibetan Plateau in batches and carried out arduous and fruitful work. The observation tests and plans were successfully completed. After the completion of the IOP in September, 1998, five automatic weather stations (AWS), one Portable Atmospheric Mosonet (PAM), one boundary layer tower and integrated radiation observatory (Amdo) and nine soil temperature and moisture observation stations have been continuously observed to date and have obtained extremely valuable information for 8 years and 6 months consecutively (starting from June 1997). The experimental area is located in Nagqu, in northern Tibet, and has an area of 150 km × 200 km (Fig. 1), and observation points are also established in D66, Tuotuohe and the Tanggula Mountain Pass (D105) along the Qinghai-Tibet Highway. The following observation stations (sites) are set up on different underlying surfaces including plateau meadows, plateau lakes, and desert steppe. (1) Two multidisciplinary (atmosphere and soil) observation stations, Amdo and NaquFx, have multicomponent radiation observation systems, gradient observation towers, turbulent flux direct measurement systems, soil temperature and moisture gradient observations, radiosonde, ground soil moisture observation networks and multiangle spectrometer observations used as ground truth values for satellite data, etc. (2) There are six automatic weather stations (D66, Tuotuohe, D105, D110, Nagqu and MS3608), each of which has observations of wind, temperature, humidity, pressure, radiation, surface temperature, soil temperature and moisture, precipitation, etc. (3) PAM stations (Portable Automated Meso - net) located approximately 80 km north and south of Nagqu (MS3478 and MS3637) have major projects similar to the two integrated observation stations (Amdo and NaquFx) above and to the wind, temperature and humidity turbulence observations. (4) There are nine soil temperature and moisture observation sites (D66, Tuotuohe, D110, WADD, NODA, Amdo, MS3478, MS3478 and MS3637), each of which has soil temperature measurements of 6 layers and soil moisture measurement of 9 layers. (5) A 3D Doppler Radar Station is located in the south of Nagqu, and there are seven encrypted precipitation gauges in the adjacent (within approximately 100 km) area. The radiation observation system mainly studies the plateau cloud and precipitation system and serves as a ground true value station for the TRMM satellite. The GAME-Tibet project seeks to gain insight into the land-atmosphere interaction on the Tibetan Plateau and its impact on the Asian monsoon system through enhanced observational experiments and long-term monitoring at different spatial scales. After the end of 2000, the GAME/Tibet project joined the “Coordinated Enhanced Observing Period (CEOP)” jointly organized by two international plans, GEWEX (Global Energy and Water Cycle Experiment) and CL IVAR (Climate Change and Forecast). The Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau of the Global Coordinated Enhanced Observation Program (CEOP) has been started. The data set contains POP data for 1997 and IOP data for 1998. Ⅰ. The POP data of 1997 contain the following. 1. Precipitation Gauge Network (PGN) 2. Radiosonde Observation at Naqu 3. Analysis of Stable Isotope for Water Cycle Studies 4. Doppler radar observation 5. Large-Scale Hydrological Cycle in Tibet (Link to Numaguchi's home page) 6. Portable Automated Mesonet (PAM) [Japanese] 7. Ground Truth Data Collection (GTDC) for Satellite Remote Sensing 8. Tanggula AWS (D105 station in Tibet) 9. Syamboche AWS (GEN/GAME AWS in Nepal) Ⅱ. The IOP data of 1998 contain the following. 1. Anduo (1) PBL Tower, 2) Radiation, 3) Turbulence SMTMS 2. D66 (1) AWS (2) SMTMS (3) GTDC (4) Precipitation 3. Toutouhe (1) AWS (2) SMTMS (3 )GTDC 4. D110 (1) AWS (2) SMTMS (3) GTDC (4) SMTMS 5. MS3608 (1) AWS (2) SMTMS (3) Precipitation 6. D105 (1) Precipitation (2) GTDC 7. MS3478(NPAM) (1) PAM (2) Precipitation 8. MS3637 (1) PAM (2) SMTMS (3) Precipitation 9. NODAA (1) SMTMS (2) Precipitation 10. WADD (1) SMTMS (2) Precipitation (3) Barometricmd 11. AQB (1) Precipitation 12. Dienpa (RS2) (1) Precipitation 13. Zuri (1) Precipitation (2) Barometricmd 14. Juze (1) Precipitation 15. Naqu hydrological station (1) Precipitation 16. MSofNaqu (1) Barometricmd 16. Naquradarsite (1)Radar system (2) Precipitation 17. Syangboche [Nepal] (1) AWS 18. Shiqu-anhe (1) AWS (2) GTDC 19. Seqin-Xiang (1) Barometricmd 20. NODA (1)Barometricmd (2) Precipitation (3) SMTMS 21. NaquHY (1) Barometricmd (2) Precipitation 22. NaquFx(BJ) (1) GTDC(2) PBLmd (3) Precipitation 23. MS3543 (1) Precipitation 24. MNofAmdo (1) Barometricmd 25. Mardi (1) Runoff 26. Gaize (1) AWS (2) GTDC (3) Sonde A CD of the data GAME-Tibet POP/IOP dataset cd (vol. 1) GAME-Tibet POP/IOP dataset cd (vol. 2)