HiWATER:Dataset of flux observation matrix (No.6 eddy covariance system) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces (2012)

This dataset contains the flux measurements from site No.6 eddy covariance system (EC) in the flux observation matrix from 28 May to 21 September, 2012. The site (100.35970° E, 38.87116° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1562.97 m. The EC was installed at a height of 4.6 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

The ground temperature distribution Map of the Tibet engineering corridor (2010-2015)

The GIPL2.0 frozen soil model was used to simulate the average ground temperature distribution map of the Qinghai-Tibet Engineering Corridor. The model required to synthesize temperature data set of time series. In addition, the temperature data were divided into two phases according to the time spans, which were 1980-2009 and 2010-2015. The data of the first phase were from the Chinese meteorological driving data set (http://dam. Itpcas.ac.cn/rs/?q=data#CMFD_0.1), the data of the second phase were the application of MODIS surface temperature products (MOD11A1/A2 and MYD11A1/A2) with a spatial resolution of 1 km. In addition, the soil type data required by the model came from the China Soil Database (V1.1) and have a resolution of 1 km. At the same time, the topography was also considered. The research area was classified into 88 types based on the measured soil thermophysical parameters and land cover types, and then the simulation was performed. The annual average ground temperature simulation results were compared with the field measured data, and the results showed that they were highly consistent. The simulation results show that the annual average ground temperature is lower than -2.0 °C in high mountain areas such as Kunlun Mountain and Tanggula Mountain, while that in the higher river valleys such as Tuotuohe is above 0 °C. In the high plain areas (such as Beiluhe Basin and Wudaoliang Basin), the annual average ground temperatures are between -2.0 °C and 0 °C. If taking an annual average ground temperature lower than 0 °C as the threshold for the presence or absence of permafrost, the permafrost of the Qinghai-Tibet Engineering Corridor accounts for 78.9% of the entire area. In the meantime, according to the different ground temperatures, the frozen soils of the Qinghai-Tibet Engineering Corridor are divided into four types: low-temperature stable permafrost, low-temperature basically stable permafrost, high-temperature unstable permafrost and high-temperature extremely unstable permafrost.