Observation data of temperature and rainfall in permafrost regions of Qinghai-Tibet Engineering Corridor (1956-2012)

The data set includes the trends of annual average temperature and rainfall changes at the three meteorological stations in the permafrost section of the Qinghai-Tibet Engineering Corridor over the past 50 years. According to the recorded data, the annual average temperature is experiencing a gradually rising process. The annual average temperature change over the past 56 years in Wudaoliang and Tuotuohe has a good correlation (r2=0.83). In 1957, the average annual temperatures of Wudaoliang and Tuotuohe were -6.6 °C and -5.1 °C, respectively. By 2012, the temperatures of the two stations were -4.6 and -3.1 °C, and the total temperature has risen by approximately 2 °C. The annual average temperature rises by 0.03-0.04 °C. The annual average temperature changes over the past 47 years in Wudaoliang and Anduo also have a good correlation (r2=0.84). In 1966, the average annual temperature in Anduo was -3.0 °C. By 2012, the temperature has risen to -1.8 °C, corresponding to a total temperature rise of approximately 1.2 °C and an annual average temperature rise of 0.02-0.03 °C. The annual average temperature in Wudaoliang and Tuotuohe rose slightly faster than that in Anduo. However, the change in rainfall was more volatile than that of temperature. The correlation between the rainfall change in Wudaoliang and Tuotuohe over the past 56 years is relatively poor (r2=0.60). In 1957, the annual rainfall amounts in Wudaoliang and Tuotuohe were 302 and 309 mm, respectively. By 2012, the annual rainfall amounts at the two stations were 426 and 332 mm. Thus, the rainfall in Wudaoliang had increased by 124 mm, with an annual rainfall increase of approximately 2 mm. In contrast, the annual rainfall in Tuotuohe only increased by 0.4 mm. The correlation between the rainfall change in Wudaoliang and Anduo over the past 47 years is also poor (r2=0.35). In 1966, and 2012, the annual average rainfall amounts in Anduo were 354 and 404 mm. The total increase was approximately 50 mm, and the annual average increase was 1 mm. The annual rainfall in Wudaoliang increased the fastest. The observation data from the three meteorological stations reveal climate changes in the permafrost sections of the Qinghai-Tibet Engineering Corridor. Judging from the overall trend of temperature and rainfall changes, the temperature in the northern and central parts of the corridor has increased rapidly over the past 50 years, exceeding the global average of 0.02 °C/a (IPCC). The rainfall increase in the northern part of the corridor is also obvious, especially the rate of rainfall increase at the Wudaoliang meteorological station. Increases in both temperature and rainfall have a great impact on accelerating the spatial variation in permafrost, and they are the leading cause of permafrost degradation on the Tibetan Plateau.

HiWATER: Dataset of Hydro-meteorological observation network (an automatic weather station of Sidaoqiao populus forest station, 2015)

The data set contains the observation data of meteorological elements from the Huyanglin Station, which is located along the lower reaches of the Heihe Hydro-meteorological Observation Network, and the data set covers data from January 1, 2015 to December 31, 2015. The station is located in Sidaoqiao, Dalaihubu Town, Ejina Banner, Inner Mongolia, the underlying surface is Populus euphratica forest and Tamarisk. The latitude and longitude of the observation point is 101.1239E, 41.9932N, and the altitude is 876m. The air temperature and relative humidity sensor s are erected 28 meters above the ground, facing North; the wind speed sensor is set at 28m, facing north; the four-component radiometer is installed 24 meters above the ground, facing South; two infrared thermometers are installed 24 meters above the ground, facing South, and the probe orientation is vertical downward; two photosynthetically active radiometers are installed 24 meters above the ground, facing South, and the two probes are vertically upward and downward respectively; the soil temperature probes are buried respectively at 0cm on the ground surface, 2cm and 4cm under the ground, they are located 2 meters from the meteorological tower in the North. The soil moisture sensors are buried 2cm and 4cm under the ground, 2 meters from the meteorological tower in the South. The soil heat flow boards (3 pieces) are buried 6cm under the ground, 2 meters from the meteorological tower in the South. Observed items include: air temperature and humidity (Ta_28m, RH_28m) (unit: Celsius, percentage), wind speed (WS_28m) (unit: m/s), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watt / square meter), surface radiation temperature (IRT_1, IRT_2) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts / square meter), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm) (unit : Celsius), soil moisture (Ms_2cm, Ms_4cm) (unit: volumetric water content, percentage), up and down photosynthetically active radiation (PAR_up, PAR_down) (unit: micromoles / square meter second). Processing and quality control of observation data: (1) Ensure 144 data per day (every 10 minutes), if there is missing data, it is marked as -6999. Due to instrument adjustment, data between April 22 to April 27 of 2015 is missing. Soil heat flux data between June 19 to September 5 is missing due to sensor failure. (2) Eliminate moments with duplicate records; (3) Remove data that is significantly beyond physical meaning or beyond the measuring range of the instrument; (4) Data marked by red is debatable; (5) The formats of the date and time are uniform, and the date and time are in the same column. For example, the time is: 2015-9-10 10:30; (6) The naming rule is: AWS + site name. For hydro-meteorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).

HiWATER: Dataset of Hydrometeorological observation network (an automatic weather station of Sidaoqiao populus forest station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Sidaoqiao populus forest station between 10 July, 2013, and 31 December, 2013. The site (101.124° E, 41.993° N) was located on a populous and tamarix forest (Populus euphratica Olivier. and Tamarix chinensis Lour.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 876 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 28 m, north), wind speed profile (010C; 28 m, north), two four-component radiometer (CNR4; 6 m and 24 m, south), two infrared temperature sensors (SI-111; 24 m, south, vertically downward), two photosynthetically active radiation (PQS-1; 24 m, south, one vertically upward and one vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), and soil temperature profile (109ss-L; 0, -0.02 and -0.04 m). The observations included the following: air temperature and humidity (Ta_28 m; RH_28 m) (℃ and %, respectively), wind speed (Ws_28 m) (m/s), 24 m four-component radiation (DR_1, incoming shortwave radiation; UR_1, outgoing shortwave radiation; DLR_Cor_1, incoming longwave radiation; ULR_Cor_1, outgoing longwave radiation; Rn_2, net radiation) (W/m^2), 6 m four-component radiation (DR_2, incoming shortwave radiation; UR_2, outgoing shortwave radiation; DLR_Cor_2, incoming longwave radiation; ULR_Cor_2, outgoing longwave radiation; Rn_2, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), and soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm and Ts_100 cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Data during 16 July, 2013 and 17 July, 2013 were missing during the malfunction of datalogger. The soil heat flux (G3) was missing during 20 November, 2013 and 8 December, 2013 because the wire was break by the sheep. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

HiWATER:The MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix(automatic meteorological station of No.3)

This dataset contains the automatic weather station (AWS) measurements from site No.3 in the flux observation matrix from 3 June to 18 September, 2012. The site (100.37634° E, 38.89053° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1543.05 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP155; 5 m, towards north), rain gauge (TR525; 10 m), wind speed (010C; 10 m, towards north), a four-component radiometer (NR01; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04 m), soil moisture profile (CS616; -0.02, -0.04 m), and soil heat flux (HFP01; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), precipitation (rain, mm), wind speed (Ws_10 m, m/s), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, ℃), soil moisture profile (Ms_2 cm, Ms_4 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

HiWATER: The MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix (No.13 eddy covariance system)

This dataset contains the flux measurements from the No.13 site eddy covariance system (EC) in the flux observation matrix from 27 May to 20 September, 2012. The site (100.37852° E, 38.86074° N) was located in a cropland (maize surface) in Daman irrigation district, which is near Zhangye, Gansu Province. The elevation is 1550.73 m. The EC was installed at a height of 5 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.18 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.