Landuse/Landcover data of the Heihe river basin (2000)

China 1:100000 data of land use is a major application in the Chinese Academy of Sciences "five-year" project "the national resources and environment remote sensing macroscopic investigation and study of dynamic organized 19 Chinese Academy of Sciences institute of remote sensing science and technology team, by means of satellite remote sensing, in three years based on Landsat MSS, TM and ETM remote sensing data established China 1:100000 images and vector of land use database.The main contents include: China 1:100,000 land use data;China 1:100,000 land use graph data and attribute data. The data was directly clipped from China's 1:100,000 land-use data.A hierarchical land cover classification system was adopted for the land use data of heihe basin of 1:100,000, and the whole basin was divided into 6 primary categories (arable land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 26 secondary categories.The data type is vector polygon, which is stored in Shape format.There are two types of data projection: WGS84/ALBERS;Data coverage covers the new heihe watershed boundary (lack of outer Mongolia data). Land use classification attributes: The first class type and the second class type attributes encode the spatial distribution position Cultivated paddy field 113 is mainly distributed in alluvial plain, basin and valley Cultivated paddy field 112 distributed in hilly valley narrow valley platform or beach (with irrigation conditions) Cultivated paddy field 111 is mainly distributed in mountain valley narrow valley platform or beach (with better irrigation conditions) Arable land 124 is mainly distributed in mountainous areas, the slope is generally more than 25 degrees (belongs to the steep slope hanging land), should be returned to forest. Cultivated dry land 123 is mainly distributed in basins, piedmont belts, river alluvial, diluvial or lacustrine plains (water shortage and poor irrigation conditions). Cultivated dry land 122 is mainly distributed in hilly areas (shaanxi, gan, ning, qing).In general, the plot is distributed on gentle slopes and x and sockets of hills. Arable land 121 is mainly distributed in the mountainous area, with an elevation of 4000 meters below the slope (gentle slope, mountainside, steep slope platform, etc.) and mountain front belt. Woodlands have woodlands (trees) 21 mainly distributed in the mountains (below 4000 meters above sea level) or in the slope, valley two slopes, mountain tops, plains.In qinghai nanshan, qilian mountains are. Woodland shrub 22 is mainly distributed in the higher mountain areas (below 4500 m), most of the distribution of hillside and valley and sand. Forest dredging 23 mainly distributed in the mountains, hills, plains and sandy land, gobi (soil, gravel) edge. Other woodlands 24 are mainly distributed in the oasis ridge, river, roadside and rural residential areas around. Grassland 31 is generally distributed in mountainous areas (gentle slopes), hills (steep slopes) and interriver beaches, gobi desert, sandy hills, etc. The covered grassland 32 is mainly distributed in dry places (next door low-lying land and sandy hills, etc.). Grassland low cover grassland 33 mainly grows in drier places (loess hills and sandy edges). The river channel 41 is mainly distributed in the plain, the cultivated land between the rivers and the valleys in the mountains. Water lakes are mainly distributed in low-lying areas. The reservoirs are mainly distributed in the intermountain lowlands and intersandy hills in qinghai province. Water area glaciers and permanent snow 44 mainly distributed in the plain, the valley between the river, there are surrounding residents and arable land. Waters and beaches are mainly distributed on the top of (over 4000) mountains.

Monthly irrigation dataset (for both surface water and groundwater) with 30 sec spatial resolution over the Heihe River Basin (1981-2013)

Agricultural irrigation, which accounts for about 80% of human water consumption, is the most important part of human water resources management and closely related to human survival and development.Irrigation is also an important part of the water cycle. Large-scale irrigation can affect the water cycle and even the local climate by affecting evapotranspiration.Excessive diversion of irrigation water will lead to unsustainable utilization of water resources, and at the same time, will reduce river flow and aquifer water reserves, thus harming the ecological environment. Therefore, determining the spatial and temporal distribution and variation of irrigation is critical to studying past human water use, the impact of irrigation on ecological and hydrological processes, the environment and climate, and the development of future irrigation plans. By integrating the irrigation amount of channel diversion water and irrigation amount of groundwater intake from different data sources, and combining the evapotranspiration data of land surface model CLM4.5 simulation and remote sensing inversion, a set of spatio-temporal continuous surface water and groundwater irrigation amount data set with spatial resolution of 30 arcseconds (0.0083 degrees) on the scale of 1981-2013 in heihe river basin was made. It has been verified that this data set has a high reliability from 2000 to 2013, and a lower reliability from 1981 to 1999 than from 2000 to 2013 due to the absence of remote sensing data and the absence of soil utilization changes. The document is described as follows: Monthly surfacewater irrigation volume file name: monthly_surfacewater_irrigation gation_1981-2013.nc Monthly groundwater_irrigation gation_1981-2013.nc The data is in netcdf format.There are three dimensions, which are month, lat, and lon. Where, month is a month, and the value is 0-395, representing each month from 1981 to 2013. Lat is grid latitude information, and lon is grid longitude information.