• 黑河下游荒漠河岸林植物树干液流数据集(2012-2013)

    Trunk sap flow is an effective tool for measuring transpiration of a single plant. In this project, the trunk sap flow data of Populus euphratica in the lower reaches of Heihe River was measured by HRM (ICT, Australia) with a frequency of 0.5h. In the growth season of 2012-2013, the installation location is the north and lateral roots (50cm underground depth, 30cm away from the trunk) at the DBH (1.3m).

    0 2020-03-06

  • 黑河综合遥感联合试验:排露沟流域和大野口流域加密观测区固定森林样地调查数据集(2003-2007)

    The fixed forest sample plot is located in the drainage ditch of Dayekou, Qilian Mountain, where the hydrological observation field of Gansu Water Conservation Forest Research Institute is located. From July 2003 to August 2003 and from July 2007 to August 2007, the tree survey of the sample plot was completed by technicians from Gansu Water Conservation Forest Research Institute and Institute of environment and Engineering in cold and dry areas of Chinese Academy of Sciences. A total of 17 fixed forest samples were observed, including the survey of sample plot factors and the survey of each tree. The observation factors of sample plots mainly include forest farm, longitude and latitude coordinates, slope direction, slope position, slope, soil thickness, canopy density of arbor layer, leaf area index, etc. The main instruments used in the measurement are tape, DBH, flower pole, tree measuring instrument, compass and fish eye camera. The measurement factors of each tree include DBH, height of tree, height under branch, crown width in cross slope direction, crown width along slope direction, growth status of single tree, etc. For details, please refer to the metadata of "Heihe River Integrated Remote Sensing joint test: fixed sample plot tree survey data set (2003)" and "Heihe River Integrated Remote Sensing joint test: fixed sample plot tree survey data set (2007)". The Lai in this data set is the supplementary measurement data during the joint remote sensing experiment of Heihe River in 2008. That is to say, the supplementary measurement of Lai has been done in these fixed plots. The supplementary observation time of Lai was from June 1 to 13, 2008. 15 of the 17 fixed plots were investigated. Four instruments were used to observe each plot. In addition to the commercial instruments such as hemiview fish eye camera, LAI-2000 and trac, these instruments also use the canopy analysis instrument made by Beijing Normal University. In each 20 m × 20 m plot, trac measures along two parallel routes perpendicular to the direction of sunlight incidence, which can basically represent the entire quadrat; hemiview fisheye camera and LAI-2000 measure the same points, that is, take three points on the trac line, plus the center point of the quadrat, a total of 7 measuring points. This set of data set can provide ground data for the study of remote sensing inversion method of forest structure parameters.

    0 2020-03-10

  • 疏勒河流域1:25万河流分布数据集(2000)

    Shule River Basin is one of the three inland river basins in Hexi corridor. In recent years, with the obvious change of climate and the aggravation of human activities, the shortage of water resources and the problem of ecological environment in Shule River Basin have become increasingly prominent. It is of great significance to study the runoff change of Shule River Basin in the future climate situation for making rational water resources planning and ecological environment protection The data is river data set of Shule River Basin, revised according to topographic map and TM remote sensing image, with a scale of 250000. The data includes spatial data and attribute data, and attribute data fields: HYD CODE (River code), Name (river name) and SHAPE Leng (river length). Collect and sort out the basic, meteorological, topographical and geomorphic data of Shule River Basin, and provide data support for the management of Shule River Basin.

    0 2020-03-29

  • 黑河生态水文遥感试验:黑河流域中游生态水文无线传感器网络BNUNET土壤温湿度观测数据集(2012)

    This dataset includes soil moisture and soil temperature observations of 75 BNUNET nodes during the period from May to September 2012 (UTC+8), which is one type of WSN nodes in the Heihe eco-hydrological wireless sensor network (WSN). The BNUNET located in the observation matrix of the HiWATER artificial oasis eco-hydrology experimental area. Each BNUNET node observes the soil temperature at 4 cm, 10 cm and 20 cm depth, and soil moisture at 4 cm depth with 10 minutes interval. This dataset can be used in the estimation of surface hydrothermal variables and their validation, eco-hydrological research, irrigation management and so on. The detail description please refers to "Data introduction.docx".

    0 2019-09-15

  • 全球300米分辨率欧空局陆地覆盖数据(1992-2015)

    The land cover classification product is the second phase product of the ESA Climate Change Initiative (CCI), with a spatial resolution of 300 meters and a temporal coverage of 1992-2015. The spatial coverage is latitude -90-90 degrees, longitude -180-180 degrees, and the coordinate system is the geographic coordinate WGS84. The classification of the surface coverage is based on the Land Cover Classification System (LCCS) of the Food and Agriculture Organization of the United Nations. When the data are used for scientific research purposes, the ESA CCI Land Cover project should be acknowledged. In addition, the published article should be send to contact@esalandcover-cci.org.

    0 2020-06-03

  • 黑河生态水文遥感试验:水文气象观测网数据集(大满超级站涡动相关仪-2015)

    This data set contains the observation data of vortex-correlograph in the middle reaches of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in the daman irrigation district of zhangye city, gansu province.The latitude and longitude of the observation point is 100.37223E, 38.85551N, and the altitude is 1556.06m.The rack height of the vortex correlativity meter is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 17cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Li7500A of the eddy current system was calibrated from April 12 to 14, and data was missing. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).

    0 2020-04-10

  • 祁连山天老池流域自动气象站数据集(2011-2012)

    The data set contains observation data from the Tianlaochi small watershed automatic weather station. The latitude and longitude of the station are 38.43N, 99.93E, and the altitude is 3100m. Observed items are time, average wind speed (m/s), maximum wind speed (m/s), 40-60cm soil moisture, 0-20 soil moisture, 20-40 soil moisture, air pressure, PAR, air temperature, relative humidity, and dew point temperature , Solar radiation, total precipitation, 20-40 soil temperature, 0-20 soil temperature, 40-60 soil temperature. The observation period is from May 25, 2011 to September 11, 2012, and all parameter data are compiled on a daily scale.

    0 2020-03-13

  • 黑河生态水文遥感试验:黑河流域中游大满灌区PLMR地面同步观测数据集(2012年7月26日)

    On July 26, 2012, the airborne ground synchronous observation was carried out in the plmr quadrat in the dense observation area of Daman. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The flight mainly covers the middle reaches of the artificial oasis eco hydrological experimental area. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: The observation area is located in the matrix of the dense observation area of Daman, and the detailed plan with an area of 3.0KM × 2.4km is selected to carry out synchronous observation on the underlying surface of oasis. The selection of the sample is mainly based on the representativeness of the surface coverage, accessibility and observation (road consumption) time, so as to obtain the comparison of brightness and temperature with plmr observation. Considering the resolution of plmr observation, 5 splines (east-west distribution) were collected at an interval of 450 m in the east-west direction. Each line has 31 points (north-south direction) at an interval of 100 m, and 5 hydraprobe data acquisition systems (HDAS, reference 2) were used for simultaneous measurement. Measurement content: About 150 points on the quadrat were obtained, each point was observed twice, that is to say, two times were observed at each sampling point, one time was inside the film (marked as a in the data record) and one time was outside the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and imaginary part of soil complex dielectric are observed. Because the vegetation in this area has been sampled and observed once every five days, no special vegetation synchronous sampling has been carried out on that day. Data: This data set consists of two parts: soil moisture observation and vegetation observation. The former saves data in vector file format, and the spatial location is the location of each sampling point (WGS84 + UTM 47N). Soil moisture and other measurement information are recorded in attribute file.

    0 2020-03-13

  • 黑河综合遥感联合试验:临泽草地加密观测区机载WiDAS地面同步观测数据集(2008年5月30日)

    The dataset of ground truth measurements synchronizing with airborne WiDAS mission was obtained in the Linze grassland foci experimental area on May 30, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included the land surface temperature measured by the hand-held infrared thermometer in the reed plot A, the saline plots B and C, the alfalfa plot D and the barley plot E, the maximum of which were 120m×120m and the minimum were 30m×30m, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying measured by the cutting ring and the mean soil temperature from 0-5cm measured by the probe thermometer in plot A, B and C; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity measured by the POGO soil sensor, and the mean soil temperature from 0-5cm measured by the probe thermometer in plot D and E. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.

    0 2019-05-23

  • 黑河生态水文遥感试验:水文气象观测网数据集(上游阿柔超级站大孔径闪烁仪-2013)

    This dataset contains the flux measurements from the large aperture scintillometer (LAS) at A’rou Superstation in the hydrometeorological observation network of Heihe River Basin between 14 October, 2012, and 31 December, 2013. There were two types of LASs at A’rou Superstation: German BLS450 and China zzlas. The north tower was set up with the zzlas receiver and the BLS450 transmitter, and the south tower was equipped with the zzlas transmitter and the BLS450 receiver. Zzlas has been in use since 14 October, 2012, and the observation period of BLS450 was from 9 August to 10 December, 2013. The site (north: 100.467° E, 38.050° N; south: 100.450° E, 38.033° N) was located in Caodaban village of A’rou town in Qilian county, Qinghai Province. The underlying surface between the two towers was alpine meadow. The elevation is 3033 m. The effective height of the LASs was 9.5 m, and the path length was 2390 m. The data were sampled at 5 Hz and 1 Hz intervals for BLS450 and zzlas, respectively, and then averaged over 1 min. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS450: Cn2>7.25E-14, zzlas: Cn2>7.84E-14). (2) The data were rejected when the demodulation signal was small (BLS450: Average X Intensity<1000; zzlas: Demod>-20 mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 and Andreas, 1988 were selected for BLS450 and zzlas, respectively. Several instructions were included with the released data. (1) The data were primarily obtained from BLS450 measurements, and missing flux measurements from the BLS450 instrument were substituted with measurements from the zzlas instrument. The missing data were denoted by -6999. Due to the drift of the zzlas signal, data from 10 November to 23 November, 2012, and 14 March to 10 April, 2013, were excluded. Due to the LAS tower’s lean, the data from 10 April to 31 May, 2013, were not collected. (2) The dataset contained the following variables: data/time (yyyy-m-d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

    0 2019-09-13