• 黑河生态水文遥感试验:非均匀下垫面地表蒸散发的多尺度观测试验-通量观测矩阵数据集(14号点涡动相关仪,2012)

    This dataset contains the flux measurements from site No.14 eddy covariance system (EC) in the flux observation matrix from 30 May to 21 September, 2012. The site (100.35310° E, 38.85867° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1570.23 m. The EC was installed at a height of 4.6 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

    0 2019-09-13

  • 黑河生态水文遥感试验:水文气象观测网数据集(混合林站涡动相关仪-2017)

    This data set contains the eddy correlation-meter observation data of the mixed forest station downstream of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The station is located in Inner Mongolia ejin banner four road bridge, under the surface is populus and tamarix.The longitude and latitude of the observation point are 101.1335e, 41.9903n and 874 m above sea level.The rack height of the vortex correlativity instrument is 22m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500) is 17cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.2m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.April 7 solstice April 8 due to instrument calibration, 3.24-4.08 infrared gas analyzer error, data missing.Suspicious data caused by instrument drift, etc., are identified in red font.When 10Hz data is missing due to a problem with the memory card storage data, the data is replaced by the 30min flux data output by the collector. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Li et al. (2013), and for observation data processing, please refer to Liu et al. (2011).

    0 2020-03-04

  • 黑河干流(莺落峡以上流域)生态水文过程模拟结果(2000-2012)V2.0

    The output data of the distributed eco-hydrological model (GBEHM) of the upper reaches of the black river include the spatial distribution data series of 1-km grid. Region: upper reaches of heihe river (yingxiaoxia), time resolution: month scale, spatial resolution: 1km, time period: 2000-2012. The data include evapotranspiration, runoff depth and soil volumetric water content (0-100cm). All data is in ASCII format. See basan.asc file in the reference directory for the basin space range. The projection parameter of the model result is Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area.

    0 2020-08-10

  • 黑河生态水文遥感试验:黑河流域中游大满超级站TerraSAR-X地面同步观测数据集(2012年6月4日)

    The first dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 4 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The second dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 15 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The third dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 26 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The measurements were conducted at a sampling plot southeast to the Daman Superstation with an area of around 100 m × 100 m, which was dominantly planted with maize. Steven Hydro probes were used to collect soil moisture and other measurements with an interval of 5 m. For each sampling point, two measurements were acquired within an area of 1 m2, with one for the soil covered by plastic film (point name was tagged as LXPXXA) and the other for exposed soil (point name was tagged as LXPXXB). Concurrently with soil moisture sampling, vegetation properties were measured at around 10 locations within this sampling plot. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, LAI, vegetation water content, canopy height, row distance and leaf chlorophyll content. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.

    0 2019-09-13

  • 黄河上游内蒙河段非标准站日气象数据(1952-2006)

    I. Overview This data set contains daily meteorological data from the Inner Mongolia section of the Yellow River from Wuhai to Dalat Banner from 1952 to 2006. Non-standard station data includes two elements, namely: temperature and precipitation. Ⅱ. Data processing description The data is stored as integers, the temperature unit is (0.1 ° C) value, the precipitation unit is (0.1 mm), and it is stored as an ASCII text file. Ⅲ. Data content description Standard station data, temperature and precipitation are stored separately, which are temperature file and precipitation file. Ⅳ. Data usage description In terms of resources and environment, meteorological data is used to simulate the regional climate change and runoff, sediment, water and soil loss and vegetation changes in the basin, and is also a necessary input condition for remote sensing inversion.

    0 2020-06-05

  • 黄河上游ETM+数据集(1999-2010)

    Ⅰ. Overview Landsat5 was launched in April 1999. As a supplement and enhancement to the Landsat series, it carries an EMT+ sensor. The parameters of each band are close to that of Landsat5, but the panchromatic band with a resolution of 15 m is added, and the resolution of thermal infrared band is increased to 60 m.This dataset was collected in 1999-2010. There were 97 scenes of TM data in the upper reaches of the Yellow River. Due to sensor damage, there were bands in the images. Ⅱ. Data processing description Product level is L1 and has been geometrically corrected. Ⅲ. Data content description The naming method is L5 and row number and column number _ column number and date (yyyymmdd), such as L75129032_03220040816. Ⅳ. Data usage description The main applications are soil use/cover and desertification monitoring.

    0 2020-06-08

  • 全球河湖矢量数据集(2010)

    River and lake resources are important components for studying the Earth ecological environment, affecting global ecosystems, heat, material exchange and balance and serving as an important basis for studying changes in the global environmental mechanism. At present, the lack of global lake vector data with large-scale, high-precision, and large-range has hindered hydrological research on rivers and lakes. Taking the data collection of global rivers and lakes of Jun Chen as the source data and combining the domestic high-resolution image GF data of 2 to 3 years before and after 2010, a data set of global rivers and lakes was generated. This data set makes up for the shortcomings of low precision in some areas and is an editable lake and river vector data set with high accuracy.

    0 2020-12-22

  • 黑河综合遥感联合试验:盈科绿洲、花寨子荒漠和临泽草地加密观测区地基热像仪地表辐射温度观测数据集(2008)

    The dataset of LST (land surface temperature) observed by the thermal camera (ThermaCAM SC2000 and ThermaCAM S60) at 24°×18° was obtained in the Yingke oasis, Huazhaizi desert steppe and Linze grassland foci experimental areas on May 20, 24,28 and 30, Jun. 1, 4, 16 and 29, Jul. 7, 8 and 11, 2008. Meanwhile, the optical photos were acquired in Yingke oasis maize field, Huazhaizi desert No. 1 and 2 plots, Huazhaizi desert maize field and Linze grassland. The dataset of ground truth measurement was synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner), OMIS-II, Landsat TM and ASTER.

    0 2019-09-13

  • 中国1:1000万冻土区划及类型图(2000)

    These data are digitized for the Geocryological Regionalization and Classification Map of the Frozen Soil in China (1:10 million) (Guoqing Qiu et al., 2000; Youwu Zhou et al., 2000), adopting a geocryological regionalization and classification dual series system. The geocryological regionalization system and classification system are used on the same map to reflect the commonality and individuality of the formation and distribution of frozen soil at each level. The geocryological regionalization system consists of three regions of frozen soil: (1) the frozen soil region of eastern China; (2) the frozen soil region of northwestern China; and (3) the frozen soil region of southwestern China (Tibetan Plateau). Based on the three large regions, 16 regions and several subregions are further divided. In the division of the geocryological boundary in the frozen soil area, the boundary between major regions I and III mainly consults the results of Bingyuan Li (1987). The boundary between major regions II and III is the northern boundary of the Tibetan Plateau, which is the Kunlun Mountains-Altun Mountains-Northern Qilian Mountains and the piedmont line. The boundary between major regions I and II is in the area of Helan Mountain-Langshan Mountain. The boundary of the secondary region is divided by the geomorphological conditions in regions II and III. However, in region I, it is mainly divided by the ratio of the annual temperature range A to the annual mean temperature T, and the frozen depths of various regions are taken into consideration. The classification system is divided into 8 types based on the continuity of frozen soil, the time of existence of frozen soil and the seasonal frozen depth. The various classifications of boundaries are mainly taken from the "Map of Snow, Ice and Frozen Ground in China" (1:4 million) (Yafeng Shi et al., 1988) and consult some new materials, whereas the seasonal frozen soil boundary is mainly based on the weather station data. The definitions of each classification are as follows: (1) Large permafrost: the continuous coefficient is 90%-70%; (2) Large-island permafrost: the continuous coefficient is 70%-30%; (3) Sparse island-shaped permafrost: the continuous coefficient is <30%; (4) Permafrost in the mountains; (5) Medium-season seasonal frozen soil: the maximum seasonal frozen depth that can be reached is >1 m; (6) Shallow seasonal frozen soil: the maximum seasonal frozen depth that can be reached is <1 m; (7) Short-term frozen soil: less than one month of storage time; and (8) Nonfrozen soil. According to the data, China's permafrost areas sum to approximately 2.19 × 106 km², accounting for 22.83% of China's territory. Among those areas, the mountain permafrost is found over 0.42×106 km2, which is 4.39% of the territory of China. The seasonal frozen soil area is approximately 4.76×106 km², accounting for 49.6% of China's territory, and the instantaneous frozen soil area is approximately 1.86×106 km², i.e., 19.33% of China's territory. For more information, please see the references (Youwu Zhou et al., 2000).

    0 2020-10-09

  • 全国遥感年平均地表温度和冻结指数(2008)

    The 2008 national remote sensing annual average surface temperature and freezing index is a 5 km instantaneous surface temperature data product based on MODIS Aqua/Terra four times a day by Ran Youhua et al. (2015). A new method for estimating the annual average surface temperature and freezing index has been developed. The method uses the average daily mean surface temperature observed by LST in morning and afternoon to obtain the daily mean surface temperature. The core of the method is how to recover the missing data of LST products. The method has two characteristics: (1) Spatial interpolation is carried out on the daily surface temperature variation observed by remote sensing, and the spatial continuous daily surface temperature variation obtained by interpolation is utilized, so that satellite observation data which is only once a day is applied; (2) A new time series filtering method for missing data is used, that is, the penalty least squares regression method based on discrete cosine transform. Verification shows that the accuracy of annual mean surface temperature and freezing index is only related to the accuracy of original MODIS LST, i.e. the accuracy of MODIS LST products is maintained. It can be used for frozen soil mapping and related resources and environment applications.

    0 2020-06-03