Surface solar irradiance (SSI) is one of the products of FY-4A L2 quantitative inversion. It covers a full disk without projection, with a spatial resolution of 4km and a temporal resolution of 15min (there are 40 observation times in the whole day since 20180921, except for the observation of each hour, there is one observation every 3hr before and after the hour), and the spectral range is 0.2µ m~5.0 µ m. The output elements of the product include total irradiance, direct irradiance on horizontal plane and scattered irradiance, the effective measurement ranges between 0-1500 w / m2. The qualitative improvement of FY-4A SSI products in coverage, spatial resolution, time continuity, output elements and other aspects makes it possible to further carry out its fine application in solar energy, agriculture, ecology, transportation and other professional meteorological services. The current research results show that the overall correlation of FY-4A SSI product in China is more than 0.75 compared with ground-based observation, which can be used for solar energy resource assessment in China.
0 2022-04-18
The fluctuation of a single lake level is a comprehensive reflection of water balance within the basin, while the regional consistent fluctuations of lake level can indicate the change of regional effective moisture. Previous researches were mainly focused on reconstructing effective moisture by multiproxy analyses of lake sediments, but lacked the quantitative studies on regional effective moisture variation. This dataset exhibits the Holocene effective moisture change in typical lake regions of the Tibetan Plateau and East and Central Asia, including Qinghai Lake, Chen Co, Bangong Co, etc., by constructing a virtual lake system, based on a lake energy balance model, a lake water balance model and a transient climate evolution model. The simulation results provide a new perspective for exploring the evolution of lakes on the millennial scale.
0 2022-04-18
This data is the aridity index (AI) under the rcp4.5 scenario. AI data is the ratio of precipitation to potential evapotranspiration. This data is calculated by the average of 14 models. These 14 modes are canesm2; ccsm4; cnrm-cm5; csiro-mk3-6-0; giss-e2-r; hadgem2-cc; hadgem2-es; inmcm4; ipsl-cm5a-lr; miroc5; miroc-esm-chem; miroc-esm; mpi-esm-lr; mri-cgcm3. The spatial resolution is 2 * 2 degrees, and the temporal resolution is from January 2020 to December 2099. This data set can be used to analyze the future dry and wet change scenarios in the Great Lakes region of Central Asia, as well as the dry and wet past and pattern in other regions of the world under the future scenarios.
0 2022-04-18
This daily land surface kernel-driven BRDF model's coeciffients proudct is with a spatl resolution of 0.02 ° x 0.02 ° over the Tibet Plateau in 2016. Multi-sensory data is used to retrieve the the kernel-driven BRDF model and coupled with topographic effects, and prior knowledge is introduced for quality control inversion. The high-precision BRDF of good spatial-temporal continiuty is retrieved by combining MODIS reflectance data (a polar orbiting satellite) and himawari-8 AHI land surface reflectance (a geostationary satellite ). MODIS lans surface reflectance data and AHI TOA reflectance data are downloaded from the official websites. After registration, atmospheric correction and other processing, the daily resolution BRDF is synthesized with a period of 5 days. Compared with similar products, it has more advantages in capturing rapidly changing surface features, and has better temporal and spatial continuity with the shortest composition period. It can effectively support angular effects correction and the BRDF-releated parameters' retrieval.
0 2022-04-18
Based on the medium resolution long time series remote sensing image Landsat, the data set obtained six periods of ecosystem type distribution maps of the Qinghai Tibet Plateau in 1990 / 1995 / 2002 / 2005 / 2010 / 2015 through image fusion, remote sensing interpretation and data inversion, and made the original ecological base map of the Qinghai Tibet Plateau in 25 years (1990-2015). According to the area statistics of various ecosystems in the Qinghai Tibet Plateau, the area of woodland and grassland decreased slightly, the area of urban land, rural residential areas and other construction land increased, the area of rivers, lakes and other water bodies increased, and the area of permanent glacier snow decreased from 1990 to 2015. The atlas can be used for the planning, design and management of ecological projects in the Qinghai Tibet Plateau, and can be used as a benchmark for the current situation of the ecosystem, to clarify the temporal and spatial pattern of major ecological projects in the Qinghai Tibet Plateau, and to reveal the change rules and regional differences of the pattern and function of the ecosystem in the Qinghai Tibet Plateau.
0 2022-04-18
Glacier is the supply water source of rivers in the western mountainous area, and it is one of the most basic elements for people to survive and develop industry, agriculture and animal husbandry in the western region. Glaciers are not only valuable fresh water resources, but also the source of serious natural disasters in mountainous areas, such as sudden ice lake outburst flood, glacier debris flow and ice avalanche. Glacier hydrological monitoring is the basis for studying the characteristics of glacier melt water, the replenishment of glacier melt water to rivers, the relationship between glacier surface ablation and runoff, the process of ice runoff and confluence, and the calculation and prediction of floods and debris flows induced by glacier and seasonal snow melt water. Glacial hydrology refers to the water and heat conditions of glacial covered basins (i.e. glacial action areas), that is, the water and heat exchange between glaciers and their surrounding environment, the physical process of water accumulation and flow on the surface, inside and bottom of glaciers, the water balance of glaciers, the replenishment of glacial melt water to rivers, and the impact of water bodies in cold regions on climate change. At present, hydrological monitoring stations are mainly established at the outlet of the river basin to carry out field monitoring《 Glacial water resources of China (1991), hydrology of cold regions of China (2000) and glacial Hydrology (2001) summarize the early studies on glacial hydrology. China has carried out glacier hydrological monitoring on more than 20 glaciers in Tianshan, Karakorum, West Kunlun, Qilian, Tanggula, Nianqing Tanggula, gangrigab, Hengduan and Himalayas. This data set is the monthly runoff data of representative glaciers.
0 2022-04-18
Coupled Model Intercomparison Project Phase 5 (CMIP5) provides a multiple climate model environment, which can be used to predict the future climate change in the key nodes in the Belts and Road to deal with the environmental and climate problems. Key nodes in the Belt and Road are taken as the study regions of this dataset. The ability of 43 climate models in CMIP5 to predict the future climate change in the study regions was assessed and the optimal models under different scenarios were selected according to the RMSE between the prediction results and real observations. This dataset is composed of the prediciton results of precipitation and near-surface air temperature between 2006 and 2065 using the optimal models in monthly temporal frequncy. The spatial resolution of the dataset has been downscaled to 10 km using statistical downscaling method. Data of each period has three bands, namely maximum near-surface air temperature, minimum near-surface air temperature and precipitation. In this data set, the unit of precipitation is kg / (m ^ 2 * s), and the unit of near-surface air temperature is K. This dataset provides data basis for solving environmental and climate problems of the key nodes in the Belts and Road.
0 2022-04-18
This data is the disturbance disaster data of 1:250000 major projects in the Qinghai Tibet Plateau. For the scope of disaster interpretation, line engineering (national highway, high-speed, railway and Power Grid Engineering) and hydropower engineering are bounded by the first watershed on both sides of the project; Mine, oilfield and port projects are bounded by 1km away from the project. Engineering disturbance disasters can be divided into two categories: ① landslide, collapse and debris flow disasters induced by engineering construction; ② For natural disasters that may affect the project, it is stipulated that all natural disasters within the above interpretation scope belong to category ② engineering disturbance disasters. The data includes the location, length, width, height difference, distribution elevation, genetic type, inducing factors, occurrence time, lithology and other elements of landslide, disaster related projects and project construction years. Based on Google Earth image and 1:500000 geological diagram, 6176 disaster points were interpreted; Google Earth is mainly used for disturbance disaster interpretation, and combined with field investigation to verify the interpretation results, ArcGIS is used to generate disaster distribution map; The data comes from Google Earth high-resolution images, with high accuracy of original data. In the process of generating disaster files, the interpretation specifications are strictly followed, and special personnel are assigned to review, so the data quality is reliable; Based on the collected data, the disaster risk analysis of the study area can be carried out to provide theoretical guidance for the smooth operation of the built projects and the construction of the line projects not built / under construction.
0 2022-04-18
Precipitation estimates with fine quality and spatio-temporal resolutions play significant roles in understanding the global and regional cycles of water, carbon, and energy. Satellite-based precipitation products are capable of detecting spatial patterns and temporal variations of precipitation at fine resolutions, which is particularly useful over poorly gauged regions. However, satellite-based precipitation products are the indirect estimates of precipitation, inherently containing regional and seasonal systematic biases and random errors. Focusing on the potential drawbacks in generating Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) and its recently updated retrospective IMERG in the Tropical Rainfall Measuring Mission (TRMM) era (finished in July 2019), which were only calibrated at a monthly scale using ground observations, Global Precipitation Climatology Centre (GPCC, 1.0◦/monthly), we aim to propose a new calibration algorithm for IMERG at a daily scale and to provide a new AIMERG precipitation dataset (0.1◦/half-hourly, 2000–2015, Asia) with better quality, calibrated by Asian Precipitation – Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE, 0.25◦/daily) at the daily scale for the Asian applications. Considering the advantages from both satellite-based precipitation estimates and the ground observations, AIMERG performs better than IMERG at different spatio-temporal scales, in terms of both systematic biases and random errors, over mainland China.
0 2022-04-18
The data involved two periods of geodetic glacier mass storage change of Naimona’Nyi glaciers in the western of Himalaya from 1974-2013 (unit: m w.e. a-1). It is stored in the ESRI vector polygon format. The data sets are composed of two periods of glacier surface elevation difference between 1974-2000 and 2000-2013, i.e. DHSRTM2000-DEM1974(DH2000-1974)、DHTanDEM2013-SRTM2000(DH2013-2000). DH2000-1974 was surface elevation change between SRTM2000 and DEM1974, i.e. the earlier historical DEM (DEM1974, spatial resolution 25m) was derived from 1:50,000 topographic maps in October 1974(DEM1974,spatial resolution 25m). The uncertainty in the ice free areas of DH2000-1974 was ±0.13 m a-1. The surface elevation difference between 2000-2013 (DH2000-2013, by DinSAR techniques from SRTM DEM2000 and TSX/TDX data on Oct.17th in 2013) The uncertainty in the ice free areas of DH2013-2000 was ±0.04 m a-1. Glacier-averaged annual mass balance change (m w.e.a-1) was averaged annually for each glacier, which was calculated by DH2000-1974/DH2013-2000, glacier coverage area and ice density of 850 ± 60 kg m−3. The attribute data includes Glacier area by Shape_Area (m2), EC74_00, EC00_13, i.e. Glacier-averaged surface elevation change in 1974-2000 and 2000-2013(m a-1), MB74_00, MB00_13 i.e. Glacier-averaged annual mass balance in 1974-2000 and 2000-2013 (m w.e.a-1), and MC74_00, MC00_13, Glacier-averaged annual mass change in 1974-2000 and 2000-2013 (m3 w.e.a-1), Uncerty_MB, is the uncertainty of glacier-averaged annual mass balance(m w.e. a-1), Uncerty_MC, is the Maximum uncertainty of glacier-averaged annual mass change(m3 w.e. a-1). The data sets could be used for glacier change, hydrological and climate change studies in the Himalayas and High Mountain Asia.
0 2022-04-18
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn