The data set is the seasonal hydrological observation data of the Yellow River from the hydrological station of the Qinghai Tibet Plateau. There are two hydrological stations: 1. Longmen hydrological station in the middle reaches of the Yellow River, which is the weekly hydrological data in 2013, including water temperature (T), runoff (QW), physical erosion rate (per) and pH. 2. Tangnaihai hydrological station of the Yellow River is monthly data from July 2012 to June 2014, including runoff (QW), sediment (salt), pH and EC. The data set was commissioned to be observed by the staff of the hydrological station of the Yellow River Water Conservancy Commission to provide basic hydrological data for the study of hydrology, hydrochemistry and hydrosphere cycle under the background of Qinghai Tibet Plateau uplift.
0 2022-04-19
This data set takes the freezing index calculated by the long-time scale (1901-2016) temperature provided by UEA-CRU and UDEL as the input data, calculates the soil freezing depth of Yarlung Zangbo River Basin through Stefan empirical formula, and interpolates the 30-year scale average soil freezing depth data set output by simulation. This data set takes the freezing index calculated by the long-time scale (1901-2016) temperature provided by UEA-CRU and UDEL as the input data, calculates the soil freezing depth of Yarlung Zangbo River Basin through Stefan empirical formula, and interpolates the 30-year scale average soil freezing depth data set output by simulation.
0 2022-04-19
Koppen Geiger climate type map is a high-resolution grid data set after Rubel (2017) downscaling, which provides two data subsets: a data NetCDF file and an NCL code for individual visualization. The dataset represents the climate type distribution from 1986 to 2010, with a resolution of 5 minutes of arc (1 / 12 degree, about 10km). Using the downscaling algorithm developed by Rubel et al. (2017), the reanalyzed K ö ppen Geiger climate type data obtained a high-resolution version of 5 arc minutes. It represents the distribution of climate types in the last 25 years. In addition, the color meter needle optimizes the higher resolution, resulting in slightly different map appearance.
0 2022-04-19
Mercury is a global pollutant.The Qinghai-Tibet Plateau is adjacent to South Asia, which currently has the highest atmospheric mercury emissions, and could be affected by long-distance transport.The history of atmospheric mercury transport and deposition can be well reconstructed using ice cores and lake cores. The history of atmospheric mercury deposition since the industrial revolution was reconstructed based on 8 lake cores and 1 ice core from the Tibetan Plateau and the southern slope of the Himalayas.This data set contains 8 lake core data from Namtso, Bangongtso, Linggatso, Guanyong Lake, Tanggula Lake, Gosainkunda Lake, Gokyo Lake and Phewa Lake, and 1 ice core data .The resolution of ice core data is 1 year, lake core data is 2~20 years, and the data include mercury concentration and flux.
0 2022-04-19
Agricultural Water Resources Supply, Demand and Development Data Set in the Five Central Asia Countries from 1980 to 2015 are derived from the Global Land Surface Data Assimilation System, including precipitation, evapotranspiration and runoff data output based on Noah, Mosaic and VIC models, respectively. The data set has high temporal and spatial resolution and good longitude. It is widely used in global and regional scale research. The results of precipitation, evapotranspiration and runoff simulation of Noah, Mosaic and VIC models are consistent in spatial distribution. It can be used to analyze the spatial and temporal variation of water resources in Central Asia, to analyze the supply and demand relationship of agricultural water resources and to evaluate the potential of water resources development.
0 2022-04-19
To describing the quantity of atmospheric water resource gaining over the TP, we provide two indexs based on ERA5 monthly reanalysis. One is called column water income (CWI), defined as the sum of vertical integrated divergence of water vapor flux and surface evaporation. It is 0.25 ×0.25 gridded with unit of kg/m2 or millimeter. Another one is Atmospheric water tower index (AWTI), total of net income of atmospheric water resource for the entire TP area, i.e., and unit is Gt.
0 2022-04-19
This dataset is derived from the paper: Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, Stefan Wunderle. (2021). Evaluation of snow extent time series derived from AVHRR GAC data (1982-2018) in the Himalaya-Hindukush. The Cryosphere, 15,4261-4279. ln this paper, the performance of the AVHRR GAC snowpack product in the Hindu Kush Himalayas is comprehensively evaluated for the first time on a long time scale (1982-2018) based on ground station data, Landsat data, and MODIS snowpack product, respectively, including the consistency of the accuracy/precision of the product over a long time series, and the consistency of the product with Landsat and MODIS snowpack data in terms of spatial distribution. The main factors affecting the accuracy of the AVHRR GAC snowpack product are also revealed.
0 2022-04-19
This dataset contains measurements of L-band brightness temperature by an ELBARA-III microwave radiometer in horizontal and vertical polarization, profile soil moisture and soil temperature, turbulent heat fluxes, and meteorological data from the beginning of 2016 till August 2019, while the experiment is still continuing. Auxiliary vegetation and soil texture information collected in dedicated campaigns are also reported. This dataset can be used to validate the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellite based observations and retrievals, verify radiative transfer model assumptions and validate land surface model and reanalysis outputs, retrieve soil properties, as well as to quantify land-atmosphere exchanges of energy, water and carbon and help to reduce discrepancies and uncertainties in current Earth System Models (ESM) parameterizations. ELBARA-III horizontal and vertical brightness temperature are computed from measured radiometer voltages and calibrated internal noise temperatures. The data is reliable, and its quality is evaluated by 1) Perform ‘histogram test’ on the voltage samples (raw-data) of the detector output at sampling frequency of 800 Hz. Statistics of the histogram test showed no non-Gaussian Radio Frequency Interference (RFI) were found when ELBAR-III was operated. 2) Check the voltages at the antenna ports measured during sky measurements. Results showed close values. 3) Check the instrument internal temperature, active cold source temperature and ambient temperature. 3) Analysis the angular behaviour of the processed brightness temperatures. -Temporal resolution: 30 minutes -Spatial resolution: incident angle of observation ranges from 40° to 70° in step of 5°. The area of footprint ranges between 3.31 m^2 and 43.64 m^2 -Accuracy of Measurement: Brightness temperature, 1 K; Soil moisture, 0.001 m^3 m^-3; Soil temperature, 0.1 °C -Unit: Brightness temperature, K; Soil moisture, m^3 m^-3; Soil temperature, °C/K
0 2022-04-19
This data set is the spatial distribution of soil POPs in the Tibetan Plateau, including OCPs, PCBs, PBDEs and PAHs. Fourty soil samples were taken from remote sites (i.e., away from towns, roads, or other human activity) in 8 soil zones of the Tibetan Plateau in 2007. The samples were collected using a stainless steel hand-held corer.Five cores (0-5 cm), taken over an area of ~100 m2, were bulked together to form one sample. The samples were wrapped in aluminum foil twice and sealed in two plastic bags to minimize the possibility for contamination. All the samples were analyzed at Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Chinese Academy of Sciences. The samples were Soxhlet-extracted, purified on an aluminium/silica column (i.d. 8 mm), a gel permeation chromatography (GPC) column subsequently, and were detected on a gas chromatograph with an ion-trap mass spectrometer (GC-MS, Finnigan Trace GC/PolarisQ) operating under MS–MS mode. A CP-Sil 8CB capillary column (50 m ×0.25 mm, film thickness 0.25 μm) was used for OCPs, PCBs and PBDEs, and a DB-5MS column (60 m ×0.25mm, film thickness 0.25 μm) was used for PAHs. Procedural blanks were prepared. The recoveries ranged from 53% to 130% for OCPs, and 58% to 92% for PAHs. The reported concentrations were not corrected for recoveries.
0 2022-04-19
The global monthly all-sky land surface temperature (2000-2020) is produced by the method from Chen et al. 2017 JHM.
0 2022-04-19
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn