To understand the potential impact of projected climate changes on the vulnerable agriculture in Central Asia (CA) in the future, six agroclimatic indicators are calculated based on the 9km-resolution dynamical downscaled results of three different global climate models and a high-resolution projection dataset of agroclimatic indicators over CA is produced. These indicators are growing season length (GSL, days), biologically effective degree days (BEDD, ℃), frost days (FD, days), summer days (SU, days), warm spell duration index (WSDI, days), and tropical nights (TR, days). The periods are 1986-2005 and 2031-2050. The spatial resolution is 0.1°. As all the indicators except WSDI are defined with absolute temperature thresholds and particularly sensitive to the systematics biases in the model data, the quantile mapping (QM) method is applied to correct the simulated temperature. Results show the QM method largely reduces the biases in all the indicators. GSL, SU, WSDI, and TR will significantly increase over CA and FD will decrease. However, changes in BEDD are spatially heterogeneous, with the increases in northern CA and the mountainous areas and decreases in the southern and middle part of the plain areas. This dataset can be applied for assessing the future risks in the local agriculture for climate changes and will be beneficial to adaption and mitigation actions for food security in this region.
0 2022-04-15
The vegetation type map was created by the random forest (RF) classification approach, based on 319 ground-truth samples, combined with a set of input variables derived from the visible, infrared, and thermal Landsat-8 images. According to vegetation characteristics, four types include alpine swamp meadow (ASM), alpine meadow (AM), alpine steppe (AS), and alpine desert (AD) were classified in this map. Based on a spatial resolution of 30 m, the map can provide more detailed vegetation information.
0 2022-04-15
This data set is a code file set of TCA (triple collision analysis) algorithm, which is used to generate the global daily-scale soil moisture fusion dataset from 2011 to 2018.
0 2022-04-15
This is the supporting data for the paper entitled 'understanding key processes associated with alpine lake ice phenology using a coupled atmosphere-lake model', which is planned to submit to Geophysical Research Letters. This data includes the model code and simulation data at lake Nam-Co based on WRF-Flake.
0 2022-04-15
1) Data content: the main ecological environment data retrieved from remote sensing in Pan third polar region, including PM2.5 concentration, forest coverage, Evi, land cover, and CO2; 2) data source and processing method: PM2.5 is from the atmospheric composition analysis group web site at Dalhousie University, and the forest coverage data is from MODIS Vegetation continuum Fields (VCF), CO2 data from ODIAC fossil fuel emission dataset, EVI data from MODIS vehicle index products, and land cover data from ESA CCI land cover. 65 pan third pole countries and regions are extracted, and others are not processed; 3) data quality description: the data time series from 2000 to 2015 is good; 4) data application achievements and prospects: it can be used for the analysis of ecological environment change.
0 2022-04-15
The Tibetan Plateau (TP), acting as a large elevated land surface and atmospheric heat source during spring and summer, has a substantial impact on regional and global weather and climate. To explore the multi-scale temporal variation in the thermal forcing effect of the TP,The data set of atmospheric heat source/sink in Tibetan Plateau was prepared as a quantitative analysis tool for calculating heat budget of gas column. the atmospheric heat source/sink dataset consists of three variables: surface sensible heat flux SH, latent heat release LH and net radiation flux RC. here we calculated the surface sensible heat and latent heat release based on 6-h routine observations at 80 (32) meteorological stations during the period 1979–2016:air temperature at 1.5 m and surface temperature and wind speed at 10 m are used to calculate surface sensible heat flux,the latent heat release is estimated precipitation data.The satellite datasets used to calculate the net radiation flux were the Global Energy and Water Cycle Experiment surface radiation budget satellite radiation(GEWEX/SRB) and Clouds and Earth’s Radiant Energy Systems/Energy Balanced And Filled (CERES/EBAF). The monthly shortwave and longwave radiation fluxes at the surface and at the top of the atmosphere (TOA) in GEWEX/SRB and CERES/EBAF were utilized to obtain the net radiation flux for the period 1984–2015 via statistical methods。
0 2022-04-15
Since the original zoning data only divides China into six regions according to regional geographical location, but does not consider the special geographical region of Qinghai Tibet Plateau and the differences in economic development between central and southern China, there are certain limitations in analyzing the economic development and ecological environment of different regions in China. Based on the original distribution of six regions in China, The division of Qinghai Tibet Plateau is added, and the original central south is divided into central China and South China according to the geographical location. Therefore, the data includes a total of eight divisions. The data can be used to compare the differences of climate change, ecological environment, economic development and landform between different regions of China.
0 2022-04-15
Lakes collect runoff, sediment and nutrients from upstream watersheds and are an important "destination" of material migration at the watershed scale. Therefore, the attributes of lake water and sediment are affected by catchment attributes (e.g. climate, terrain and vegetation conditions) to a large degree. This dataset delineates the watershed boundaries of 1525 Lakes (with an area from 0.2 to 4503 square kilometers) on the Tibetan Plateau, and calculates 721 catchment-scale attributes on the aspects of lake body, terrain, climate, vegetation, soil/geology and anthropogenic activities. This is the first dataset of lake-catchment characteristics on the Tibetan Plateau, which can provide foundamental data for the study of lakes in the Tibetan Plateau.
0 2022-04-15
This dataset includes annual mosaics of Antarctic ice velocity derived from Landsat 8 images between December, 2013 and April, 2019, which was updated in 2020 in order to produce multi-year annual ice velocity mosaics and improve the quality of products including non-local means (NLM) filter, and absolute calibration using rock outcrops data. The resulting Version 2 of the mosaics offer reduced local errors, improved spatial resolution as described in the README file.
0 2022-04-15
The data set of ice core-snow black carbon content on the Tibetan plateau (1950-2006) contains five (5) tables: 1 Xu et al. 2006 AG, 2 Xu et al. 2009 PNAS_Conc., 3 Xu et al. 2009 PNAS_flux, 4 Xu et al. 2012 ERL, 5 Wang et al. 2015 ACP. The data collection sites include the Meikuang glacier, Dongkemadi, Qiangyong, Kangwure, Naimona’nyi, Muztagata, Rongbuk, Tanggula Mountain, Ningjin Gangsang, Zuoqipu, and Glacier No. 1 at the headwaters of the Ürüqi River. The latitudes and longitudes of the collection locations, elevations and other information are marked in the data. The main indicators of the data are location, time, organic carbon (OC), elemental carbon (EC), black carbon (BC) content and flux. Location: latitude and longitude Time: year or date OC: organic carbon EC: elemental carbon BC: Black carbon Conc.: content, unit: ng g-1 Flux: flux, unit: mg m-2a-1 The data come from the following subjects. 1. National Program on Key Basic Research Project (973 Program):Temporal and Spatial Characteristics and Remote Sensing Modeling of Global Change Sensitive Factors; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the Ministry of Science and Technology. 2. National Key Basic Research Program: The Response of Formation and Evolution on the Tibetan Plateau to Global Changes and Adaptation Strategy; Person in charge: Tandong Yao; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the Ministry of Science and Technology. 3. The General Program of National Natural Science Foundation of China: High-resolution Carbon Black Recording in Snow Ice of the Tibetan Plateau; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). 4. The General Program of the National Natural Science Foundation of China: Extraction of Climate and Environment Information from Ice Core Encapsulated Gas on the Tibetan Plateau; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). 5. National Natural Science Foundation of China for Distinguished Young Scholars: Snow and Ice-Atmospheric Chemistry and Environmental Changes on the Tibetan Plateau; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). 6. National Natural Science Foundation of China for Distinguished Young Scholars: Study on the Changes of Aerosol Emissions and Combustion in Human Activities in South Asia in the Past 100 Years; Person in charge: Mo Wang; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). Observation methods: two-step heating method, thermal/optical carbon analysis method, and single-particle black carbon aerosol photometer.
0 2022-04-15
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn