Snow, ice, and glaciers have the highest albedo of any part of Earth's surface. The increase in melting of the polar ice sheet results in a rapid and sequential decrease in albedo and subsequently influences the global energy balance. The hydrological system derived from surface melt and basal meltwater will affect the dynamic stability of ice sheet and therefore mass balance. The dataset combined microwave radiometer product and optical albedo product, the daily, winter (June-August) averages and July averages of the former are used for layer-stacking, then Gram-Schmidt Spectral Sharpening was adapted to fuse the layer-stacking results with MODIS GLASS albedo product. The spatial resolution of fusion-results has been downscaled from 25 km to 0.05˚. By employing a threshold-based melt detection approach for each fusion-results pixel, Antarctic ice sheet surface melt daily product for 1985-1986, 2000-2001, 2015-2016 (DSSMIS) was generated. The spatial resolution of DSSMIS is higher than that of published data sets at home and abroad. Combined with the advantages of radiometer and albedo data, the spatial details characteristics are enhanced and consistent with the extraction range of the original radiometer products, effectively reducing the noise of the radiometer. It better reflects the melting gradient of mountainous area, groundline area and ice shelf over time, DSSMIS has a higher accuracy. DSSMIS’s data type is integer, where 1 is melted, 0 is not melted, 255 is masked area besides Antarctic ice sheet, and the data set is stored as *.nc.
0 2022-04-18
The data set mainly includes the investigation data set of geological disasters, pavement diseases and bridge and culvert diseases along Qinghai Tibet highway g109, Qinghai Tibet railway and Xinzang highway G219. The investigation time is August 12, 2020 - August 19, 2020, and July 26, 2021 - August 15, 2021. The survey objects are South Asia channel and Himalayan Mountain project. The types of diseases investigated mainly include geological disasters induced by freeze-thaw (rockfall, dangerous rock mass, debris flow gully and debris slope), pavement crack diseases, loose diseases, pit diseases, subgrade deformation diseases, bridge and culvert diseases, etc. The method of manual investigation shall be adopted to observe the damage of various diseases, and the quantity (range), damage degree and location of various damage types of pavement, bridge and culvert and geological disasters shall be recorded in detail as required. The data set can provide a basis for a comprehensive understanding of the freeze-thaw diseases of South Asia channel and Himalayan mountain projects and related research.
0 2022-04-18
The observation data are from the Khunjerab gradient meteorological observation and test station on Pamir Plateau built by Urumqi desert Meteorological Institute of China Meteorological Administration in 2017, including the gradient data of various meteorological elements. The data period is from November 18, 2019 to October 8, 2021. The *. Xlsx format obtained by using toa5 merging tool and MS office has good data quality. This data can provide support for the research on the law of surface radiation and energy budget in Pamir Plateau and China Pakistan Economic Corridor, and provide reference basis for land surface process. Khunjerab meteorological station is located in the Pamir Plateau of China, with an altitude of 4600m, close to the border between China and Pakistan, and the data is extremely precious.
0 2022-04-18
This dataset contains the glacier outlines in Qilian Mountain Area in 2020. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2020 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2020, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
0 2022-04-18
1) Dataset: The dataset includes mass balance data during 2010-2015 on the Laohuogou Glacier No. 12. 2) Sourc and methods: the mass balances were measured at each 100 m elevation belt, and every elevation had installed three plastic stick to measure mass balance. The mass balance of entire glacier was mesrued in May and September, the glacier-wide mass balance was calculated following met Area-Average method. 3) Data quality dsecription: data were manually measured following glaciology method, with a good quality.
0 2022-04-18
This data set is the distribution data of permafrost and underground ice in Qilian Mountains. Based on the existing borehole data, combined with the Quaternary sedimentary type distribution data and land use data in Qilian mountain area, this paper estimates the distribution of underground ice from permafrost upper limit to 10 m depth underground. In this data set, 374 boreholes in Qilian mountain area are used, and the indication function of Quaternary sedimentary type to underground ice storage is considered, so it has certain reliability. This data has a certain scientific value for the study of permafrost and water resources in Qilian Mountains. In addition, it has a certain promotion value for the estimation of underground ice reserves in the whole Qinghai Tibet Plateau.
0 2022-04-18
The data content mainly includes the main and micro data of the whole rock of some magmatic rocks in the Hoh Xil Lhasa plate of the Qinghai Tibet Plateau. The samples were mainly distributed in Hoh Xil lake, South Qiangtang guoganjianian, Dugur, and Gangdise Nasongduo and Saga counties. There are more than 300 major and trace elements in the samples, including olivine leucite, quartz monzonite, diorite and granite, which are of great significance to the study of the lithospheric evolution of the Qinghai Tibet Plateau. Data mainly come from published articles or being accepted. XRF spectroscopy was used to determine the major elements and ICP-MS was used to determine the trace elements. The data quality is highly reliable, and the testing units include the State Key Laboratory of Guangzhou Institute of geochemistry, Chinese Academy of Sciences, etc. The data are published in high-level journals, including geology, BSA bulletin and Journal of petroleum.
0 2022-04-18
These data contain two data files: GLOBELAND30 TILES (raw data) and TIBET_ GLOBELAND30_MOSAIC (mosaic data). The raw data were downloaded from the Global Land Cover Data website (GlobalLand3) (http://www.globallandcover.com) and cover the Tibetan Plateau and surrounding areas. The raw data were stored in frames, and for the convenience of using the data, we use Erdas software to splice and mosaic the raw data. The Global Land Cover Data (GlobalLand30) is the result of the “Global Land Cover Remote Sensing Mapping and Key Technology Research”, which is a key project of the National 863 Program. Using the American Landsat images (TM5, ETM+) and Chinese Environmental Disaster Reduction Satellite images (HJ-1), the data were extracted by a comprehensive method based on pixel classification-object extraction-knowledge checks. The data include 10 primary land cover types—cultivated land, forest, grassland, shrub, wetland, water body, tundra, man-made cover, bare land, glacier and permanent snow—without extracting secondary types. In terms of accuracy assessment, nine types and more than 150,000 test samples were evaluated. The overall accuracy of the GlobeLand30-2010 data is 80.33%. The Kappa indicator is 0.75. The GlobeLand30 data use the WGS84 coordinate system, UTM projection, and 6-degree banding, and the reference ellipsoid is the WGS 84 ellipsoid. According to different latitudes, the data are organized into two types of framing. In the regions of 60° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 6° (longitude); in the regions of 60° to 80° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 12° (longitude). The framing is projected according to the central meridian of the odd 6° band. GLOBELAND30 TILES: The original, unprocessed raw data are retained. TIBET_ GLOBELAND30_MOSAIC: The Erdas software is used to mosaic the raw data. The parameter settings use the default value of the raw data to retain the original, and the accuracy is consistent with that of the downloading site.
0 2022-04-18
The data set collected long-term monitoring projects from multiple stations for atmosphere, hydrology and soil in the North Tibetan Plateau. The data set consisted of monitoring data obtained from the automatic weather station (AWS) and the atmospheric boundary layer tower (PBL) in the field. The sensors for temperature, humidity and pressure were provided by Vaisala of Finland; the sensors for wind speed and direction were provided by Met One of America, the radiation sensors were provided by APPLEY of America and EKO of Japan; the gas analyzers were provided by Licor of America; the soil water content instrument, ultrasonic anemometers and data collectors were provided by CAMPBELL of America. The observation system was maintained by professionals regularly (2-3 times a year), the sensors were calibrated and replaced, and the collected data were downloaded and reorganized. The data set was processed by forming a time continuous sequence after the raw data were quality-controlled. It met the accuracy level of the original meteorological observation data of the National Weather Service and the World Meteorological Organization (WMO). The quality control included the elimination of the missing data and the systematic error caused by the failure of the sensor.
0 2022-04-18
Active layer thickness in mountians shows strong spatial heterogeneity mainly due to the complex terrain. In this data set, the active layer thickness in the upper reaches of Heihe River Basin is systematically investigated by ground-penetrating radar (GPR) and other traditional methods. Compared with other direct measurement methods, the error is about 8 cm, indicating a high reliability. This data set can provide detailed field data for understanding the active layer thickness in this area and can provide evaluation datasets for the land surface model, especially for permafrost research.
0 2022-04-18
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn