• 矮拉山冻融滑坡及冻融泥流现场地温、水分及气象要素监测数据(2019-2020)

    The data set contains the data set (98 ° 29′16″E, 31 ° Based on hobo temperature, moisture and small meteorological station, the monitoring data of shallow ground temperature, moisture and field meteorological elements of 36 ′ 36 ″ n) freeze-thaw landslide and thaw mud flow are obtained through field monitoring. The observation time is between August 31, 2019 and July 14, 2020. Through on-site monitoring of a complete freeze-thaw cycle, the monitoring data of ground temperature, moisture and meteorological elements automatically obtained by on-site sensors are downloaded. Through certain quality control, the data when the sensors are not fully adapted to the soil environment and the system error caused by sensor failure are eliminated. The observation depth of ground temperature is 10cm, 20cm, 40cm, 60cm, 80cm, 100cm, 150cm and 200cm, with a total of 8 layers. The observation depth of water is 20cm, 50cm, 100cm and 200cm, with a total of 4 layers. Meteorological observation elements mainly include temperature, rainfall, wind speed, wind direction and solar radiation. The observation interval is 30 minutes (Note: the maximum range of solar radiation sensor is 1276.8 w / m2, and the actual solar radiation value is 1276.9 w / m2 when it is greater than the maximum range; The minimum starting wind speed of the wind speed sensor is 0.5m/s. When the actual wind speed is less than the starting wind speed, the display value is 0. Therefore, the data can not reflect the phenomenon of super solar constant and wind speed below 0.5m/s). Quality control includes eliminating the data when the sensor is not fully adapted to the soil environment and the system error caused by sensor failure. The corrected final data is stored in Excel file. The integrity and accuracy of the obtained field data are more than 95% after review by many people. The monitoring data can provide the necessary data support for the research of freeze-thaw landslide and thaw mud flow in Southeast Tibet.

    0 2022-04-15

  • 青藏高原及中亚地区逐月水域范围数据(2000-2015)

    The distribution of lakes in space and its change over time are closely related to agricultural, environmental and ecological issues, and are critical factors for human socio-economic development. In the past decades, satellite based remote sensing has been developed rapidly to provide essential data sources for monitoring temporal lakes dynamics with its advantage of rapidness, wide coverage, and lower cost. This dataset was produced from Landsat images using the automated water detection method (Feng et al, 2015). We collected 96,278 Landsat images (about 25 terabytes) that acquired since 2000 with less than 80% cloud contamination in the arid region of central Asia and Tibetan Plateau. Water is detected in each of the image and then aggregated to monthly temporal resolution by taking advantage of the high-performance processing capability and large data storage provided by Global Land Cover Facility (GLCF) at University of Maryland. The results are validated systematically and quantitatively using manually interpreted dataset, which consists of a set of locations collected by a stratified random sampling strategy to effectively represent different spatial-temporal distributions in the region. The validation suggests high accuracy of the results (overall accuracy: 99.45(±0.59); user accuracy: 85.37%±(3.74); produce accuracy: 98.17(±1.05)).

    0 2022-04-15

  • 北半球湖冰厚度数据集(1992-2019,2071-2099)

    This dataset consists of four files including (1) Lake ice thickness of 16 large lakes measured by satellite altimeters for 1992-2019 (Altimetric LIT for 16 large lakes.xlsx); (2) Daily lake ice thickness and lake surface snow depth of 1,313 lakes with an area > 50 km2 in the Northern Hemisphere modeled by a one-dimensional remote sensing lake ice model for 2003-2018 (in NetCDF format); (3) Future lake ice thickness and surface snow depth for 2071-2099 modeled by the lake ice model with a modified ice growth module (table S1.xlsx); (4) A lookup table containing lake IDs, names, locations, and areas. This daily lake ice and snow thickness dataset could provide a benchmark for the estimation of global lake ice and snow mass, thereby improving our understanding of the ecological and economical significance of freshwater ice as well as its response to climate change.

    0 2022-04-15

  • 青藏高原0.01°空间分辨率近地表气温数据集(1979-2018)

    The surface air temperature dataset of the Tibetan Plateau is obtained by downscaling the China regional surface meteorological feature dataset (CRSMFD). It contains the daily mean surface air temperature and 3-hourly instantaneous surface air temperature. This dataset has a spatial resolution of 0.01°. Its time range for surface air temperature dataset is from 1979 to 2018. Spatial dimension of data: 73°E-106°E, 23°N-40°N. The surface air temperature with a 0.01° can serve as an important input for the modeling of land surface processes, such as surface evapotranspiration estimation, agricultural monitoring, and climate change analysis.

    0 2022-04-11

  • “一带一路”沿线国家人均GDP增长恢复力数据集(2000-2019)

    The GDP per capita growth resilience dataset for countries along the Belt and Road is a comprehensive reflection of the level of GDP per capita growth resilience of each country. The GDP per capita growth resilience dataset was prepared with reference to the World Bank's statistical database, using year-on-year data on GDP per capita (constant 2010 US dollars) for countries along the Belt and Road from 2000 to 2019, and based on sensitivity and adaptability analysis, taking into account the year-on-year changes of each indicator. Through a comprehensive diagnostic, a product on GDP per capita growth resilience was prepared. "The GDP per capita growth resilience dataset for countries along the Belt and Road is an important reference for analysing and comparing the current GDP per capita growth resilience of each country.

    0 2022-04-13

  • “一带一路”沿线国家国内经济系统恢复力数据集

    "The resilience of the domestic economic systems of the countries along the Belt and Road reflects the level of resilience of the domestic economic systems of each country, and the higher the value of the data, the stronger the resilience of the domestic economic systems of the countries along the Belt and Road. The resilience of domestic economic systems includes macroeconomic development resilience, industrial and service sector development resilience, and the data products are prepared with reference to the World Bank statistical database, using GDP per capita, gross fixed capital formation as a percentage of GDP, inflation as measured by GDP deflator, and gross savings as measured by GDP deflator for countries along the Belt and Road from 2000 to 2019. The resilience products of the domestic economic system are prepared through a comprehensive diagnosis based on sensitivity and adaptability analysis, taking into account the year-on-year changes of each indicator, using year-on-year data of six indicators: GDP per capita, gross fixed capital formation as a percentage of GDP, gross savings as a percentage of GDP, industrial value added as a percentage of GDP, and service value added as a percentage of GDP. "The resilience dataset of the domestic economic systems of the countries along the Belt and Road is an important reference for analysing and comparing the resilience of the domestic economic systems of various countries.

    0 2022-04-13

  • “一带一路”沿线国家CO2总量减排恢复力数据集(2000-2020)

    The CO2 emission reduction resilience of the countries along the "Belt and Road" reflects the level of CO2 emission reduction resilience of the countries along the Belt and Road, and the higher the value of the data, the stronger the CO2 emission reduction resilience of the countries along the Belt and Road. The Emissions Database for Global Atmospheric Research (EDGAR) was used to prepare data on the total CO2 emissions of the countries along the "Belt and Road" from 2000 to 2020, taking into account the year-on-year changes. Based on the sensitivity and adaptation analysis, a comprehensive diagnosis was made based on the annual data of the total CO2 emissions of the countries along the "Belt and Road" from 2000 to 2020, and a resilience product for CO2 emission reduction was prepared. "The data set of CO2 emission reduction resilience of countries along the Belt and Road is an important reference for the analysis and comparison of the current CO2 emission reduction resilience of countries.

    0 2022-04-13

  • 过去1000年北半球气温场数据

    This is Northern Hemispheric (NH) annual near-surface temperature dataset during the past millennium with a 2° spatial resolution, which is produced using the paleoclimate data assimilation approach with EnSRF method, MPI-ESM-P model and 396 multi-proxies from the PAGES2k Consoritum. This dataset agrees well with several observational temperature datasets during the instrumental period, and has a similar level of reliability as the Twentieth Century Reanalysis which assimilates surface pressure observations. In addition, the dataset shows a high level of agreement with previous proxy-based reconstructions (average correlation of annual mean NH temperatures is r = 0.61). The dataset can be used to study the temperature variability over the NH and some regions of the NH during the past millennium (1000-2000 AD).

    0 2022-04-11

  • 中国阿勒泰地区积雪微波辐射测量实验:积雪和环境电磁物理特征的原位时间序列数据

    The dataset include ground-based passive microwave brightness temperature, multi-angle brightness temperature, ten-minute 4-component radiation and snow temperature, daily snow pit data and hourly meteorological data observed at Altay base station(lon:88.07、lat: 44.73)from November 27, 2015 to March 26, 2016. Daily snow pit parameters include: snow stratification, stratification thickness, density, particle size, temperature. These data are stored in five NetCDF files: TBdata. nc, TBdata-multiangle. nc, ten-minute 4 component radiation and snow temperature. nc, hourly meteorological and soil data. nc and daily snow pit data.nc. TBdata. nc is brightness temperature at 3 channels for both polarizations automatically collected by a six-channel dual polarized microwave radiometer RPG-6CH-DP. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. TBdata-multiangle.nc is 7 groups of multi-angle brightness temperatures at 3 channels for both polarizations. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. The ten-minute 4 component radiation and snow temperature.nc contains 4 component radiation and layered snow temperatures. The contents include Year, month, day, hour, minute, SR_DOWN, SR_UP, LR_DOWN, LR_UP, T_Sensor, ST_0cm, ST_5cm, ST_15cm, ST_25cm, ST_35cm, ST_45cm, ST_55cm. The hourly meteorological and soil data.nc contains hourly weather data and layered soil data. The contents include Year, month, day, hour, Tair, Wair, Pair, Win, SM_10cm, SM_20cm, Tsoil_5cm, Tsoil_10cm, Tsoil_15 cm, Tsoil_20cm. The daily snow pit data.nc. is manual snow pit data. The observation time was 8:00-10:100 am local time. The contents include Year, month, day, snow depth, thickness_layer1, thickness_layer2, thickness_layer3, thickness_layer4, thickness_layer5, thickness_layer6, Long_layer1, Short_layer1, Long_layer2, Short_layer2, Long_layer3, Short_layer3, Long_layer 4, Short_layer4, Long_layer5, Short_layer5, Long_layer6, Short_layer 6, Stube, Snow shovel_0-10, Snow shovel _10-20, Snow shovel _20-30, Snow shovel _30-40, Snow shovel _40-50, Snow fork_5, Snow fork _10, Snow fork _15, Snow fork_20, Snow fork_25, Snow fork_30, Snow fork_35, Snow fork_40, Snow fork_45, Snow fork_50, shape1, shape2, shape3, shape4, shape5,

    0 2022-04-05

  • 中国近地表日气温数据集(1979-2018)

    Ta (Near-surface air temperature) is an important physical parameter that reflects climate change. In order to obtain daily Ta data (Tmax, Tmin, and Tavg) with high spatial and temporal resolution in China, we fully analyzed the advantages and disadvantages of various existing data (reanalysis, remote sensing, and in situ data) ,Different Ta reconstruction models are constructed for different weather conditions, and we further improve data accuracy through building correction equations for different regions. Finally, a dataset of daily temperature (Tmax, Tmin, and Tavg) in China from 1979 to 2018 was obtained with a spatial resolution of 0.1° For Tmax, validation using in situ data shows that the root mean square error (RMSE) ranges from 0.86 °C to 1.78 °C, the mean absolute error (MAE) varies from 0.63 °C to 1.40 °C, and the Pearson coefficient (R2) ranges from 0.96 to 0.99. For Tmin, RMSE ranges from 0.78 °C to 2.09 °C, the MAE varies from 0.58 °C to 1.61 °C, and the R2 ranges from 0.95 to 0.99. For Tavg, RMSE ranges from 0.35 °C to 1.00 °C, the MAE varies from 0.27 °C to 0.68 °C, and the R2 ranges from 0.99 to 1.00. Furthermore, a variety of evaluation indicators were used to analyze the temporal and spatial variation trends of Ta, and the Tavg increase was more than 0.0 °C/a, which is consistent with the general global warming trend. In conclusion, this dataset had a high spatial resolution and reliable accuracy, which makes up for the previous missing temperature value (Tmax, Tmin, and Tavg) at high spatial resolution. This dataset also provides key parameters for the study of climate change, especially high-temperature drought and low-temperature chilling damage。

    0 2022-04-02