Ⅰ. Overview This dataset is derived from the global 30m-resolution digital elevation product dataset, which is processed using the data of the first version (v1) of ASTER GDEM. Its spatial resolution is 30m. Due to the influence of clouds, lines, pits, bulges, dams or other anomalies generated by the boundary stacking, there are local anomalies in the first version of the original data of ASTER GDEM, so the digital elevation processed by ASTER GDEM v1 Data products have data anomalies in individual areas, and users need to pay attention to them during use. In addition, this data set can complement the SRTM global 90m resolution elevation dataset. Ⅱ. Data processing description ASTER GDEM is a fully automated method to process and generate ASTER archived data of 1.5 million scenes, including 1,264,118 ASTER DEM data based on independent scenes generated through stereo correlation. After de-cloud processing, residual outliers are removed, and the average value is taken as the final pixel value of ASTER GDEM object area. After correcting the remaining abnormal data, the global ASTER GDEM data was generated by 1°× 1° sharding. Ⅲ. Data content description The dataset covers the entire upper reaches of the Yellow River, and each data file name is generated based on the latitude and longitude of the lower left (southwest) Angle of the fractal geometry center. For example, the lower-left coordinate of the ASTGTM_N40E116 file is 40 degrees north latitude and 116 degrees east longitude. ASTGTM_N40E116_dem and ASTGTM_N40E116_num correspond to digital elevation model (DEM) and quality control (QA) data, respectively. Ⅳ. Data usage description ASTER GDEM data can be calculated and visualized. It has a broad application prospect in various fields, especially in mapping, surface deformation and military fields.Specifically, it mainly includes the following aspects: In scientific research, ASTER GDEM data plays an important role in geology, geophysics, seismic research, horizontal modeling, volcano monitoring and remote sensing image registration.The three-dimensional model of the ground is built by using high-precision digital terrain elevation data, which can be embedded and superimposed with the image of the ground to observe subtle changes of the earth surface. In civil and industrial applications, ASTER GDEM data can be used for civil engineering calculation, dam site selection, land use planning, etc. In communications, digital topographic data can help businesses build better broadcast towers and determine the best location of mobile phone booths.In terms of aviation safety, ASTER GDEM digital elevation data can be used to establish the enhanced aircraft landing alarm system, which greatly improves the aircraft landing safety coefficient. In the military, ASTER GDEM data is the basic information platform of C4ISR (army automatic command system), which is indispensable in the study of battlefield regional structure, combat direction, battlefield preset, combat deployment, troop concentration in projection, protection conditions, logistics support and other aspects.
0 2022-04-02
The freeze/thaw status of the near-surface soil is the water-ice phase transition that occurred at the top soil layer. It is an important indicator as a giant on-off “switch” of the land surface processes including water, energy, and carbon exchanges between the land surface and atmosphere. The freeze/thaw status is an essential variable for understanding how the ecosystem responds to and affects global changes. This dataset is based on the AMSR-E and AMSR2 passive microwave brightness temperature data, and the freeze-thaw discriminant function algorithm is used to generate the global near-surface soil freeze-thaw status with a spatial resolution of grids at 0.25° from 2002 to 2019. The dataset can be used for the analysis of the spatial distribution and trend changes of global freeze-thaw cycles, such as the freeze/thaw onset dates and duration. It provides data support for understanding the interaction mechanism between the land surface freeze-thaw cycle and the land-atmosphere exchanges under the context of global changes.
0 2022-03-30
This data is based on the DEM data generated by 1:250,000 digital contour lines and elevation points in China released by national basic geographic information center, and the DEM data set of heihe river basin is generated by the nearest neighbor method resampling method of ARCGIS spatial analysis module with a spatial resolution of 30 SEC.
0 2020-03-15
The freeze/thaw status of the near-surface soil is the water-ice phase transition that occurred at the top soil layer. It is an important indicator as a giant on-off “switch” of the land surface processes including water, energy, and carbon exchanges between the land surface and atmosphere. The freeze/thaw status is an essential variable for understanding how the ecosystem responds to and affects global changes. This dataset is based on the AMSR-E, AMSR2 passive microwave brightness temperature data and MODIS optical remote sensing data. The freeze-thaw discriminant function algorithm and downscaling algorithm are used to generate the global near-surface soil freeze-thaw status with a spatial resolution of grids at 0.05° from 2002 to 2017. The dataset can be used for the analysis of the spatial distribution and trend changes of global freeze-thaw cycles, such as the freeze/thaw onset dates and duration. It provides data support for understanding the interaction mechanism between the land surface freeze-thaw cycle and the land-atmosphere exchanges under the context of global changes.
0 2022-03-28
The Antarctic Peninsula is also called "Palmer peninsula" or "Graham land". Located in the southwest polar continent, it is the largest peninsula in the Antarctic continent and the farthest peninsula extending northward into the ocean (63 ° south latitude), bordering the Weddell Sea and berengske sea in the East and West. The Antarctic Peninsula is known as the "tropics" of Antarctica. This is a typical sub polar marine climate. Compared with the Antarctic continent, it is one of the warmest and wettest regions in Antarctica. There are a small number of pioneer plants distributed on the islands in the marginal area, mainly bryophytes and lichens. The spectrum and annotation data of Antarctic Peninsula and its surrounding plants are the spectral data of 37 sample points in 9 regions of Fildes Peninsula and Adeli island around the Antarctic Peninsula on January 7-22, 2018, which provide the background information for the study of the distribution and change of Antarctic plants.
0 2022-03-28
Supported by the Strategic Priority Research Program of the Chinese Academy of Science (XDA19070100). Tao Che, the director of this program, who comes from Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, CAS. They used machine learning methods combined with multi-source gridded snow depth product data to derive a long-time series over the Northern Hemisphere. Firstly, the applicability of artificial neural network (ANN), support vector machine (SVM) and random forest (RF) method in snow depth fusion are compared. It is found that random forest method shows strong advantages in snow depth data fusion. Secondly, using the random forest method, combined with remote sensing snow depth products such as AMSR-E, AMSR-2, NHSD and GlobSnow and reanalysis data such as ERA-Interim and MERRA-2. These gridded snow depth products and environmental factor variables are used as the input independent variables of the model. In situ observations of China Meteorological Station (945), Russia Meteorological Station (620), Russian snow survey data (514), and global historical meteorological network (41261) are used as reference truth to train and verify the model. The daily gridded snow depth dataset of the snow hydrological year from 1980 to 2019 (September 1 of the previous year to May 31 of the current year) is prepared on the cloud platform provided by the CASEarth. Since the passive microwave brightness temperature data from 1980 to 1987 is the data of every other day, there will be a small number of missing trips in the data during this period. Using the ESM-SnowMIP and independent ground observation data for verification, the quality of the fusion data set has been improved. According to the comparison between the ground observation data and the snow depth products before fusion, the determination coefficient (R2) of the fusion data is increased from 0.23 (GlobSnow snow depth product) to 0.81, and the corresponding root mean square error (RMSE) and mean absolute error (MAE) are also reduced to 7.7 cm and 2.7 cm.
0 2022-03-22
The energy supply resilience of the countries along the Belt and Road reflects the level of energy supply resilience of the countries along the Belt and Road, and the higher the value of the data, the stronger the energy supply resilience of the countries along the Belt and Road. "The energy supply resilience data for countries along the "Belt and Road" are prepared with reference to the International Energy Agency (IEA) national energy statistics (https://www.iea.org/data-and-statistics), using the 2000-2019 The energy supply resilience product was prepared based on sensitivity and adaptability analysis, using year-by-year data on coal, oil and natural gas supply in countries along the "Belt and Road", and taking into account the year-by-year changes of each energy source.
0 2022-03-10
The data set includes ASTER GDEM data and its Mosaic. ASTER Global DEM (ASTER GDEM) is a Global digital elevation data product jointly released by NASA and Japan's ministry of economy, trade and industry (METI) on June 29, 2009. The DEM data is based on the observation results of NASA's new earth observation satellite TERRA.It is produced by the ASTER(Advanced Space borne Thermal Emission and Reflection Radio meter) sensor, which collects 1.3 million stereo image data, covering more than 99% of the earth's land surface.The data has a horizontal accuracy of 30 m (95% confidence) and an elevation accuracy of 7-14 m (95% confidence).This data is the third global elevation data, which is significantly higher than previous SRTM3 DEM and GTOPO30 data. We from NASA's web site (http://wist.echo.nasa.gov/api) to download the data of heihe river basin, and through the data center to distribute.The data distributed by the center completely retains the original appearance of the data without any modification to the data.If users need details about ASTER GDEM preparation process, please refer to the data documents of metadata connections, or visit http://www.ersdac.or.jp/GDEM/E/3.html or directly from https://lpdaac.usgs.gov/ reading and ASTER Global DEM related documents. ASTER GDEM is divided into several data blocks of 1×1 degree in distribution, and the distribution format is zip compression format. Each compressed file includes three files. The file naming format is as follows: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif reademe.pdf Where xx is the starting latitude and yyy is the starting longitude._dem. Tif is the dem data file, _num. Tif is the data quality file, and reademe is the data description file. In order to facilitate users to use the data, on the basis of the fractional ASTER GDEM data, we splice fractional SRTM data to prepare the ASTER GDEM Mosaic map of the black river basin, which retains all the original features of ASTER GDEM without any resamulation. This data includes two files: heihe_aster_gdem_mosaic_dem.img Heihe_Aster_GDEM_Mosaic_num. Img The data is stored in the format of Erdas image, where the file _dem.img is the dem data file and the file _num. Img is the data quality file.
0 2022-03-02
The SRTM sensor has two bands, namely C-band and X-band. The SRTM we are using now comes from the C-band. The publicly released SRTM digital elevation products include DEM data at three different resolutions: * SRTM1 covers only the continental United States, with a spatial resolution of 1s; * SRTM3 data covers the world with a spatial resolution of 3s. This is the most widely used dataset. The elevation reference of SRTM3 is the geoid of EGM96 and the horizontal reference is WGS84. The nominal absolute elevation accuracy is ± 16m, and the absolute plane accuracy is ± 20m. * SRTM30 data also covers the world, with a resolution of 30s. There are multiple versions of SRTM data. The early SRTM data was completed by NASA's "JPL" (Jet Propulsion Laboratory) ground data processing system (GDPS). The data is called SRTM3- 1. The National Geospatial Intelligence Agency has further processed the data, and the lack of data has been significantly improved. The data is called SRTM3-2. This dataset is mainly the fourth version of SRTM terrain data obtained by CIAT (International Center for Tropical Agriculture) using a new interpolation algorithm. This method better fills the SRTM 90 data hole. The interpolation algorithm comes from Reuter et al. (2007). The data of SRTM is organized as follows: every 5 latitude and longitude grids is divided into a file, which are divided into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees). The file naming rule is srtm_XX_YY.zip, where XX indicates the number of columns (01-72), and YY indicates the number of rows (01-24). The resolution of the data is 90 m. Data use: SRTM data uses a 16-bit value to represent the elevation value (-/ + / 32767 meters), the maximum positive elevation is 9000 meters, and the negative elevation (12,000 meters below sea level). -32767 standard for empty data.
0 2022-03-02
This data set includes the daily averages of the temperature, pressure, relative humidity, wind speed, precipitation, global radiation, P2.5 concentration and other meteorological elements observed by the Qomolangma Station for Atmospheric and Environmental Observation and Research from 2005 to 2016. The data are aimed to provide service for students and researchers engaged in meteorological research on the Tibetan Plateau. The precipitation data are observed by artificial rainfall barrel, the evaporation data are observed by Φ20 mm evaporating pan, and all the others are daily averages and ten-day means obtained after half hour observational data are processed. All the data are observed and collected in strict accordance with the Equipment Operating Specifications, and some obvious error data are eliminated when processing the generated data.
0 2022-03-02
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn