The dataset is the normalized difference water index (NDWI) products from 1970s to 2020 over the Tibetan Plateau。The dataset is producted based on Landsat surface reflectance dataset. It is calculated by the NDWI equation which use the difference ratio between the green band and NIR band to enhance the water information, and then to weaken the information of vegetation, soil, buildings and other targets.And the corresponding production of quality identification documents (QA) is also generated to identify the cloud, ice and snow.NDWI is usually used to extract surface water information effectively, therefore it is widely used in water resoureces, hydrology, forestry and agriculture.
PENG Yan
Data content: The data set products include impervious surface products with a resolution of 10 meters in the Qinghai-Tibet Plateau, which can be used as a key parameter for related research on the Qinghai-Tibet Plateau ecosystem. Data source and processing method: Product inversion is mainly based on Sentinel series data, considering joint features, combining depth spatial features, long-time NDVI and other exponential features, and topographic features, and using random forest model to achieve impervious surface information extraction. Data quality: The overall accuracy is high. Data application results and prospects: The data set will be continuously updated and can be used to further clarify the impact of human activities on the ecosystem of the Qinghai-Tibet Plateau.
WANG Guizhou
A total of 52 sample sites were selected in the desert belts of Qinghai and Tibet for field sampling of aboveground biomass of vegetation during the vegetation growing season in 2019 and 2020. At the same time, the longitude, latitude and altitude of the experimental site were recorded using handheld GPS devices. The field setting method of the quadrate is as follows: select a section with uniform vegetation. When the vegetation is relatively abundant, the quadrate is set as a 10 m x10 m square plot, and when the vegetation is relatively sparse, the quadrate is set as a 30 m x30 m square plot or a 30 m x90 m rectangular plot. 3-5 small sample boxes (1m x 1m) were randomly thrown into the set sample plot to determine the specific location of the sample. Collect plant samples by sample harvesting method: register plant species, number of plants of each species and other information in sample area of 1 square meter. All kinds of plants in the quadrate were planted and mowed on the ground, and the collected herbaceous plant samples were placed in archives and marked with species, sample site name and number, collection time and other information. They were brought back to the laboratory and dried to a constant weight in a constant temperature drying oven at 65 ℃. The dry weight of the plant samples was measured. Finally, the aboveground biomass of the vegetation was calculated. In addition, two kinds of remote sensing net primary productivity (NPP) data of the 52 sample points were extracted by the longitude and latitude of the sampling points. (1) Enhanced Vegetation Index (EVI) from 2000 to 2018, and calculated the annual Integrated Enhanced Vegetation Index (IEVI). IEVI was highly correlated with net primary productivity (NPP). Can be used as a proxy indicator of net primary productivity (He et al. 2021, Science of The Total Environment). (2) Percentage of remote sensing net primary productivity (NPP) and its quality control (QC) in 2001-2020, NPP remote sensing data from MOD17A3HGF Version 6 product (https://lpdaac.usgs.gov/products/mod17a3hgfv006/), the net photosynthetic value (the total primary productivity - keep breathing) is calculated. In the sample sites with low vegetation coverage, there may be null value (NA) of remote sensing net primary productivity.
YE Jiansheng
Data content: The data set products include impervious surface products with a resolution of 30 meters in the Qinghai-Tibet Plateau, which can be used as a key parameter for related research on the Qinghai-Tibet Plateau ecosystem. Data source and processing method: Product inversion is mainly based on Landsat series data, considering joint features, combining depth spatial features, long-time NDVI and other exponential features, and topographic features, and using random forest model to achieve impervious surface information extraction. Data quality: The overall accuracy is high, better than 80% in most areas. Data application results and prospects: The data set will be continuously updated and can be used to further clarify the impact of human activities on the ecosystem of the Qinghai-Tibet Plateau.
WANG Guizhou
Aboveground biomass (AGB) is an important indicator for measuring ecosystem productivity.This dataset provides the forest aboveground biomass with a resolution of 30m in the Qinghai-Tibet Plateau from 1970s-2022. The biomass data is estimated using Landsat series data, based on actual ground data and some literature data, tree height data, and forest types including coniferous forest, broad-leaved forest and mixed forest.Through data disclosure and free download services, it provides basic data support for related research on the dynamic changes of forest ecosystems on the Qinghai-Tibet Plateau, and also provides a scientific basis for sustainable forest management in this region.
ZHANG Xiaomei
Fraction of Absorbed Photosynthetically Active Radiation (FPAR) is a key physiological variable in the study of carbon cycling and is one of the basic variables to describe vegetation ecosystems. The classification results of surface vegetation types in Qinghai-Tibet Plateau region are obtained based on the Landsat reflectance data(30m spatial resolution). According to NDVI of different vegetation types, the remote sensing inversion model is constructed to produce the growing season FPAR products for each vegetation type. This product can be used as one of the parameters to calculate vegetation carbon sequestration and evaluate vegetation ecosystem status.
PENG Dailiang
The dataset is the Landsat surface reflectance products from 1980s to 2019 over the Tibetan Plateau, it is the key input parameter of many surface geophysical parameters (such as leaf area index, chlorophyll and biomass). The dataset is retrieved based on Landsat level 4 products from China satellite remote sensing ground station, and it is retrived by using the atmospheric correction based on 6S model and BRDF correction model based on C-factor .The RMSE of geometric correction is less than 12m and the RMSD of surface reflectance is less than 5%. And the corresponding production of quality identification documents (QA) is also generated to identify the cloud, ice and snow.The Landsat surface reflectance play an important role in forest, water resources, climate change.
PENG Yan
1) Data content: the main ecological environment data retrieved from remote sensing in Pan third polar region, including PM2.5 concentration, forest coverage, Evi, land cover, and CO2; 2) data source and processing method: PM2.5 is from the atmospheric composition analysis group web site at Dalhousie University, and the forest coverage data is from MODIS Vegetation continuum Fields (VCF), CO2 data from ODIAC fossil fuel emission dataset, EVI data from MODIS vehicle index products, and land cover data from ESA CCI land cover. 65 pan third pole countries and regions are extracted, and others are not processed; 3) data quality description: the data time series from 2000 to 2015 is good; 4) data application achievements and prospects: it can be used for the analysis of ecological environment change.
LI Guangdong
This dataset is based on the long sequence (1981-2013)normalized difference vegetation index product(Version 3) of the latest NOAA Global Inventory Monitoring and Modeling System (GIMMS). First, the NDVI data products were re-sampled from the spatial resolution of 1/12 degree to 0.5 degree, then the time series of every year was smoothed by the double-logistic method, and the smoothed curvature was calculated. The maximum curvature of spring was selected as the returning green stage of the vegetation in Spring. This data can be used to analyze the temporal and spatial characteristics of the Holarctic vegetation phenology in Spring.
XU Xiyan
This dataset is based on the sixth edition of the MODIS normalized difference vegetation index product (2001-2014) jointly released by NASA EOSDIS LP DAAC and the US Geological Survey USGS EROS. The NDVI has a time resolution of 16 days and a spatial resolution of 0.05 degree. First,the NDVI data products were re-sampled from the spatial resolution of 0.05 degree to 0.5 degree, then the time series of every year was smoothed by the double-logistic method, and the smoothed curvature was calculated. The maximum curvature of spring was selected as the returning green stage of the vegetation in Spring. This data can be used to analyze the temporal and spatial characteristics of the Holarctic vegetation phenology in Spring.
NASA EOSDIS LP DAAC, XU Xiyan
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Sidalong Station from October 24 to December 31, 2018. The site (38.430°E, 99.931°N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3059 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (0.5, 3, 13, 24, and 48 m), wind speed and direction profile (windsonic; 0.5, 3, 13, 24, and 48 m), air pressure (1.5 m), rain gauge (24 m), infrared temperature sensors (4 m and 24m, vertically downward), photosynthetically active radiation (4 m and 24m), soil heat flux (-0.05 m and -0.1m), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m and -0.6mr), four-component radiometer (24 m, towards south), sunshine duration sensor(24 m, towards south). The observations included the following: air temperature and humidity (Ta_0.5 m, Ta_3 m, Ta_13 m, Ta_24 m, and Ta_48 m; RH_0.5 m, RH_3 m, RH_13 m, RH_24 m, and RH_48 m) (℃ and %, respectively), wind speed (Ws_0.5 m, Ws_3 m, Ws_13 m, Ws_24 m, and Ws_48 m) (m/s), wind direction (WD_0.5 m, WD_3 m, WD_13 m, WD_24 m, and WD_48 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_A, IRT_B) (℃), photosynthetically active radiation (PAR_A, PAR_B) (μmol/ (s m^2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, and Ts_60 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, and Ms_60 cm) (%, volumetric water content),soil water potential (SWP_5cm, SWP_10cm, SWP_20cm, SWP_40cm, and SWP_60cm)(kpa), soil conductivity (Ec_5cm, Ec_10cm, Ec_20cm, Ec_40cm, and Ec_60cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The soil water potential in the area is so low that it has exceeded the sensor measurements. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Xiyinghe Station from January 1 to December 31, 2018. The site (101.853E, 37.561N) was located on a alpine meadow in the Menyuan,Qinghai Province. The elevation is 3639 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, and 8 m, towards north), wind speed and direction profile (windsonic; 2, 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_2 m, Ta_4 m, and Ta_8 m; RH_2 m, RH_4 m, and RH_8 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_2 m, WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s/m^2)), soil heat flux (Gs_5 cm, Gs_10cm) (W/m^2), soil temperature (Ts_20 cm, Ts_40 cm) (℃), soil moisture (Ms_20 cm, Ms_40 cm) (%, volumetric water content), soil water potential (SWP_20cm , SWP_40cm)(kpa) , soil conductivity (Ec_20cm, Ec_40cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The meteorological data were missing during Aug. 29 to Oct.18 because of unstable power supply due to battery box flooding; The wind speed and direction profile data were rejected because of sensor failure; The precipitation data were rejected because of program error; The air humidity data before Mar. 2 were rejected due to program error; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Liancheng Station from January 1 to December 31, 2018. The site (102.833E, 36.681N) was located on a forest in the Tulugou national forest park, which is near Liancheng city, Gansu Province. The elevation is 2912 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1.5 m), rain gauge (2 m), four-component radiometer (4 m, towards south),infrared temperature sensors (2 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation;-0.05 and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation;-0.05 and -0.1m in south of tower), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m and Ta_8 m; RH_4 m and RH_8 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_2 m, WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_5 cm, Gs_10 cm) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm) (%, volumetric water content), soil water potential (SWP_5cm,SWP_10cm)(kpa), soil conductivity (EC_5cm,EC_10cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The soil heat flux data were wrong during Jan.1 to May 30 because of rodent damage; The data during May. 30 to July 6 were missing because the power supply failure; The air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Linze Station from January 1 to December 31, 2018. The site (100.060° E, 39.237° N) was located on a cropland (maize surface) in the Guzhai Xinghua, which is near Zhangye city, Gansu Province. The elevation is 1400 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation; -0.05 and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4m), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_3 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing long wave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_5cm, Gs_10cm) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm) (%, volumetric water content), soil water potential(SWP_5cm, SWP_10cm), soil conductivity (Ec_5cm,Ec_10cm) (μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day.The precipitation and the air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
The data set includes meteorological data from the Ngari Desert Observation and Research Station from 2009 to 2017. It includes the following basic meteorological parameters: temperature (1.5 m from the ground, once every half hour, unit: Celsius), relative humidity (1.5 m from the ground, once every half hour, unit: %), wind speed (1.5 m from the ground, once every half hour, unit: m/s), wind direction (1.5 m from the ground, once every half hour, unit: degrees), atmospheric pressure (1.5 m from the ground, once every half hour, unit: hPa), precipitation (once every 24 hours, unit: mm), water vapour pressure (unit: kPa), evaporation (unit: mm), downward shortwave radiation (unit: W/m2), upward shortwave radiation (unit: W/m2), downward longwave radiation (unit: W/m2), upward longwave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). The temporal resolution of the data is one day. The data were directly downloaded from the Ngari automatic weather station. The precipitation data represent daily precipitation measured by the automatic rain and snow gauge and corrected based on manual observations. The other observation data are the daily mean value of the measurements taken every half hour. Instrument models of different observations: temperature and humidity: HMP45C air temperature and humidity probe; precipitation: T200-B rain and snow gauge sensor; wind speed and direction: Vaisala 05013 wind speed and direction sensor; net radiation: Kipp Zonen NR01 net radiation sensor; atmospheric pressure: Vaisala PTB210 atmospheric pressure sensor; collector model: CR 1000; acquisition interval: 30 minutes. The data table is processed and quality controlled by a particular person based on observation records. Observations and data acquisition are carried out in strict accordance with the instrument operating specifications, and some data with obvious errors are removed when processing the data table.
ZHAO Huabiao
By applying Supply-demand Balance Analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, based on which the vulnerability of the water resources system of the basin was evaluated. The IPAT equation was used to set a future water resource demand scenario, setting variables such as future population growth rate, economic growth rate, and unit GDP water consumption to establish the scenario. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were forecast. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydrometeorological Institute, a model of the variation tendency of the basin under climate change was designed. The glacial melting scenario was used as the model input to construct the runoff scenario under climate change. According to the national regulations of the water resources allocation of the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering of the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the (grain production) land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources under the climate change, glacial melt and population growth scenarios was analyzed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities for the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng, ZHONG Fanglei
The data set collected long-term monitoring projects from multiple stations for atmosphere, hydrology and soil in the North Tibetan Plateau. The data set consisted of monitoring data obtained from the automatic weather station (AWS) and the atmospheric boundary layer tower (PBL) in the field. The sensors for temperature, humidity and pressure were provided by Vaisala of Finland; the sensors for wind speed and direction were provided by Met One of America, the radiation sensors were provided by APPLEY of America and EKO of Japan; the gas analyzers were provided by Licor of America; the soil water content instrument, ultrasonic anemometers and data collectors were provided by CAMPBELL of America. The observation system was maintained by professionals regularly (2-3 times a year), the sensors were calibrated and replaced, and the collected data were downloaded and reorganized. The data set was processed by forming a time continuous sequence after the raw data were quality-controlled. It met the accuracy level of the original meteorological observation data of the National Weather Service and the World Meteorological Organization (WMO). The quality control included the elimination of the missing data and the systematic error caused by the failure of the sensor.
HU Zeyong
By applying Supply-demand Balance Analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, on which basis the vulnerability of the water resources system of the basin was evaluated. The IPAT equation was used to set a future water resource demand scenario, setting variables such as future population growth rate, economic growth rate, and unit GDP water consumption to establish the scenario. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydrometeorological Institute, a model of the variation tendency of the basin under climate change was designed. The glacial melting scenario was used as the model input to construct the runoff scenario under climate change. According to the national regulations for the water resources allocation of the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the (grain production) land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources under the climate change, glacial melt and population growth scenarios was analyzed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities for the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng, ZHONG Fanglei
By applying supply-demand balance analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, and the results were used to assess the vulnerability of the water resources system in the basin. The IPAT equation was used to establish a future water resource demand scenario, which involved setting various variables, such as the future population growth rate, economic growth rate, and water consumption per unit GDP. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydro-meteorological Institute, a model of the variation trends of the basin under a changing climate was designed. The glacial melting scenario was used as the model input to construct the runoff scenario in response to climate change. According to the national regulations of the water resource allocation in the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the grain production-related land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources in scenarios of climate change, glacial melting and population growth was analysed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities in the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng, ZHONG Fanglei
一. Data overview This data interchange is the second data interchange of "genomics research on drought tolerance mechanism of typical desert plants in heihe basin", a key project of the major research program of "integrated research on eco-hydrological processes in heihe basin".The main research goal of this project is a typical desert sand Holly plants as materials, using the current international advanced a new generation of gene sequencing technology to the whole genome sequence and gene transcription of Holly group sequence decoding, so as to explore related to drought resistance gene and gene groups, and transgenic technology in model plants such as arabidopsis and rice) verify its drought resistance. 二, data content 1.Sequencing of the genome and transcriptome of lycophylla SPP. The genome size of Mongolian Holly was about 926 Mb, GC content 36.88%, repeat sequence proportion 66%, genome heterozygosity rate 0.56%, which indicated that the genome has many repeat sequences, high heterozygosity and belongs to a complex genome.Based on the predicted sequence results, we subsequently carried out in-depth sequencing of the genome of lysiopsis SPP. The obtained data were assembled to obtain a 937 Mb genome sequence (table 1), which was basically the same as the predicted genome size.Through to the sand Holly transcriptome sequencing and sequence assembly (table 2), received more than 77000 genes coding sequence (Unigene), these sequences are comments found that most of the gene sequence and legumes and soybean, garbanzo beans and bean has a higher similarity (figure 1), consistent with the fact of sand ilex leguminous plants. 一), and the sand Holly is a leguminous plants consistent with the fact. 2.Discovery of simple repeat sequence (SSR) molecular markers of sand Holly: There is a transcriptome data set of sand Holly in the network public database, and the sample collection site is zhongwei city, ningxia.But this is the location of the project team samples in minqin county, gansu province, in order to study whether this sand in different areas of the Holly sequence has sequence polymorphism, we first identify the minqin county plant samples in the genomes of simple sequence repeat (SSR) markers (table 3), and then, compares the transcriptome sequences of plant sample, found in part of SSR molecular marker polymorphism (table 4), these molecular markers could be used for the species of plant genetic map construction, QTL mapping and genetic diversity analysis in the study. 三, data processing instructions Sample collection place: minqin county, gansu province, latitude and longitude: N38 ° 34 '25.93 "E103 ° 08' 36.77".Genome sequencing: a total of 8 genomic DNA libraries of different sizes were constructed and determined by Illumina HiSeq 2500 instrument.Transcriptome sequencing: a library of 24 transcriptome mrnas was constructed and determined by Illumina HiSeq 4000. 四, the use of data and meaning We selected a typical desert plant as the research object, from the Angle of genomics, parse the desert plant genome and transcriptome sequences, excavated its precious drought-resistant gene resources, and to study their drought resistance mechanism of favorable sand Holly this ancient and important to the utilization of plant resources, as well as the heihe river basin of drought-resistant plant genetic breeding, ecological restoration and sustainable development.
HE Junxian, FENG Lei
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn