The dataset investigated the growth status of plants and leaf morphological indexes of single and conjoined red sand and pearl in the middle and lower reaches of heihe river basin in 2013. The growth indexes were crown width, plant height, and biomass of fine roots and thick roots.Leaf shape indicators are: length, width, thickness, and leaf area, volume, etc.The experimental observation indexes are: leaf nitrogen content, water potential, gas exchange data, chlorophyll fluorescence data. Data include: field observation data and explanatory documents.
SU Peixi
As determined in mid-august 2013, planting species: bubbly spines (different habitats are mid-range intermountain lowland and gobi), red sand (different habitats are mid-range gobi and downstream gobi). Using the brother company of LI - 6400 Portable Photosynthesis System (Portable Photosynthesis System, LI - COR, USA) and LI - 3100 leaf area meter, etc., to the desert plant photosynthetic physiological characteristics were observed. The symbolic meaning of the observed data is as follows: Obs,observation frequency ; Photo ,net photosynthetic rate,μmol CO2•m–2•s–1; Cond stomatal conductance,mol H2O•m–2•s–1 ; Ci, Intercellular CO2 concentration, μmol CO2•mol-1; Trmmol,transpiration rate,mmol H2O•m–2•s–1; Vpdl,Vapor pressure deficit,kPa; Area,leaf area,cm2; Tair,free air temperature ,℃; Tleaf,Leaf temperature,℃; CO2R,Reference chamber CO2 concentration,μmol CO2•mol-1; CO2S,Sample chamber CO2 concentration,μmol CO2•mol-1; H2OR,Reference chamber moisture,mmol H2O•mol-1; H2OS,Sample chamber moisture,mmol H2O•mol-1; PARo,photon flux density,μmol•m–2•s–1; RH-R,Reference room air relative humidity,%; RH-S,Relative humidity of air in sample room,%; PARi,Photosynthetic effective radiation,μmol•m–2•s–1; Press,barometric pressure,kPa; Others are the state parameters of the instrument at the time of measurement.
SU Peixi
On the basis of physiological and biochemical analysis of photosynthetic organs (leaves or assimilating branches) of typical desert plants in heihe river basin collected in mid-july 2011, some photosynthetic organs of desert plants were collected in mid-july 2012 and put into a liquid nitrogen tank and brought back to the laboratory for determination. Physiological analysis indexes mainly include: soluble protein unit: mg/g;Free amino acid unit: g/g;Chlorophyll content unit: mg/g;Superoxide dismutase (SOD) unit: U/g FW;Catalase (CAT) unit: U/(g•min);POD unit: U/(g•min);Proline (Pro) unit: g/g; Soluble sugar unit: g/g;Malondialdehyde (MDA) is given in moles per liter.
SU Peixi
At the end of September and the beginning of October, 2013, desert plants in typical areas of heihe basin stopped their growth period to conduct year-end ecological survey. There are altogether 8 survey and observation fields, which are: piedmont desert, piedmont gobi, middle reaches desert, middle reaches gobi, middle reaches desert, lower reaches desert, lower reaches gobi and lower reaches desert, with a size of 40m×40m. Three 20m×20m large quadrats were fixed in each observation field, named S1, S2 and S3, and regular shrub surveys were conducted.Each large quadrat was fixed with 4 5m x 5m small quadrats, named A, B, C, D, for the herbal survey.
SU Peixi
The data is 100,000 desert distribution map over the north_slope_of_Tianshan River Basin. This data uses 2000 TM image as data source to interpret, extract and revise. Remote sensing and geographic information system technology are combined with the mapping requirements of 1: 100,000 scale to carry out thematic mapping of deserts, sands and gravelly Gobi. Data attribute table: area (area), perimeter (perimeter), ashm_ (sequence code), class (desert code) and ashm_id (desert code), of which the desert code is as follows: mobile sand 2341010, semi-mobile sand 2341020, semi-fixed sand 2341030, Gobi desert 2342000 and saline-alkali land 2343000.
WANG Jianhua, YAN Changzhen
Data for 100000 desert map qaidam river basin, cutting since China 1:100000 desert sand data set, the data of TM images in 2000 data sources, to interpret, extraction, revision, using remote sensing and geographic information system technology combining 1:100000 scale mapping, the desert, sand and gravel gobi for thematic mapping.The desert codes are as follows: mobile sandy land 2341010, semi-mobile sandy land 2341020, semi-fixed sandy land 2341030, gobi desert 2342000, saline alkaline land 2343000.
WANG Jianhua
In mid-july 2011, photosynthetic organs (leaves or assimilating branches) of typical desert plants were collected and brought back to the laboratory in a liquid nitrogen tank for determination. The analysis indexes mainly include soluble protein unit: mg/g;Free amino acid unit: g/g;Chlorophyll content unit: mg/g;Superoxide dismutase (SOD) unit: U/g FW;Catalase (CAT) unit: U/(g•min);POD unit: U/(g•min);Proline (Pro) unit: g/g; Soluble sugar unit: g/g;Malondialdehyde (MDA) is given in moles per liter.
SU Peixi
This dataset is the first 1: 100,000 desert spatial database in China based on the graphic data of desert thematic maps. It mainly reflects the geographical distribution, area size, and mobility of sand dunes in China. According to the system design requirements and relevant standards, the input data is standardized and uniformly converted into a standard format for various types of data input. Build a library to run the delivery system. This project uses the TM image in 2000 as the information source, and interprets, extracts, and edits the coverage of the national land use map and TM digital image information in 2000. It uses remote sensing and geographic information system technology to 1: 100,000 Thematic mapping requirements for scale bar maps were made on the desert, sandy land and gravel Gobi in China. The 1: 100,000 desert map across the country can save users a lot of data entry and editing work when they are engaged in research on resources and the environment. Digital maps can be easily converted into layout maps The dataset properties are as follows: Divided into two folders e00 and shp: Desert map name and province comparison table in each folder 01 Ahsm Anhui 02 Bjsm Beijing 03 Fjsm Fujian 04 Gdsm Guangdong 05 Gssm Gansu 06 Gxsm Guangxi Zhuang Autonomous Region 07 Gzsm Guizhou 08 Hebsm Hebei 09 Hensm Henan 10 Hljsm Heilongjiang 11 Hndsm Hainan 12 Hubsm Hubei 13 Jlsm Jilin Province 14 Jssm Jiangsu 15 Jxsm Jiangxi 16 Lnsm Liaoning 17 Nmsm Inner Mongolia Gu Autonomous Region 18 Nxsm Ningxia Hui Autonomous Region 19 Qhsm Qinghai 20 Scsm Sichuan 21 Sdsm Shandong 22 Sxsm Shaanxi Province 23 Tjsm Tianjin 24 Twsm Taiwan Province 25 Xjsm Xinjiang Uygur Autonomous Region 26 Xzsm Tibet Autonomous Region 27 Zjsm Zhejiang 28 Shxsm Shanxi 1. Data projection: Projection: Albers False_Easting: 0.000000 False_Northing: 0.000000 Central_Meridian: 105.000000 Standard_Parallel_1: 25.000000 Standard_Parallel_2: 47.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) 2. Data attribute table: area (area) perimeter ashm_ (sequence code) class (desert encoding) ashm_id (desert encoding) 3. Desert coding: mobile sandy land 2341010 Semi-mobile sandy land Semi-fixed sandy land 2341030 Gobi 2342000 Saline land 2343000 4: File format: National, sub-provincial and county-level desert map data types are vector shapefiles and E00 5: File naming: Data organization based on the National Basic Resources and Environmental Remote Sensing Dynamic Information Service System is performed on the file management layer of Windows NT. The file and directory names are compound names of English characters and numbers. Pinyin + SM composition, such as the desert map of Gansu Province is GSSM. The flag and county desert map is the pinyin + xxxx of the province name, and xxxx is the last four digits of the flag and county code. The division of provinces, districts, flags and counties is based on the administrative division data files in the national basic resources and environmental remote sensing dynamic information service operation system.
WANG Jianhua, WANG Yimou, YAN Changzhen, QI Yuan
Desertification is a kind of land degradation with aeolian sands as the main symbol caused by the uncoordinated human-land relationship in arid, semi-arid and some semi-humid regions of northern China. Data source: edited by the China Institute of Glacial and Frozen Desert and coordinated by the Institute of Geography of the Chinese Academy of Sciences. Based on aerial photographs from the 1970s and field research, a 1: 2 million desert map was drawn. Mapping of the 14 million "Map of the People's Republic of China" published in 1971. First, the data set content 1.Desert_Ch_2009 (desert distribution) 2.Dune_hight_Ch_200 (dune height) 3.Gobi_Ch_200 (Gobi) 4.Wind_eroded_land_Ch_200 (wind erosion data) The fields of the desertification attribute table are as follows: (1) Semifixed (semi-fixed dunes): undulating sandy land (2-1), thicket dunes (2-2), parabolic dunes (2-3), beam nest dunes (2-4), sand ridges And dendritic sand ridge (2-5), honeycomb sand dune (2-6), honeycomb sand ridge (2-7), composite sand ridge (2-8) (2) Fixation (fixed dune): flat sandy land (3-1), grassland bush (3-2), sand ridge (3-3), honeycomb sand dune (3-4) (3) Migratory: Crescent sand dunes and dune chains (1-1), Crescent sand ridges and dunes (1-2), Lattice dunes and Lattice dune chains (1-3), Fish scales Sand dunes (1-4), feathery dunes (1-5), pyramid dunes (1-6), composite dunes and dune chains (1-7), composite dunes (1-8), composite Dome-shaped dunes (1-9), chain-shaped sand hills (sand dunes) (1-10), stacked chain-shaped sand hills (1-11), compound ridge-shaped sand hills (1-12), composite chain-shaped Sand Mountain (1-13), Pyramid Sand Mountain (1-14) (4) class_id: encoding of desertification attributes Projection information PROJCS ["Albers", GEOGCS ["GCS_Beijing_1954", DATUM ["Beijing_1954", SPHEROID ["Krasovsky_1940", 6378245.0,298.3]], PRIMEM ["Greenwich", 0.0], UNIT ["Degree", 0.0174532925199433]], PROJECTION ["Albers_Conic_Equal_Area"], PARAMETER ["False_Easting", 0.0], PARAMETER ["False_Northing", 0.0], PARAMETER ["longitude_of_center", 105.0], PARAMETER ["Standard_Parallel_1", 25.0], PARAMETER ["Standard_Parallel_2", 47.0], PARAMETER ["latitude_of_center", 0.0], UNIT ["Meter", 1.0]]
WANG Jianhua
The compilation basis of frozen soil map includes: (1) frozen soil field survey, exploration and measurement data; (2) aerial photo and satellite image interpretation; (3) topo300 1km resolution ground elevation data; (4) temperature and ground temperature data. Among them, the distribution of permafrost in the Qinghai Tibet Plateau adopts the research results of nanzhuo Tong et al. (2002). Using the measured annual average ground temperature data of 76 boreholes along the Qinghai Tibet highway, regression statistical analysis is carried out to obtain the relationship between the annual average ground temperature and latitude, elevation, and based on this relationship, combined with the gtopo30 elevation data (developed under the leadership of the center for earth resources observation and science and technology, USGS) Global 1 km DEM data) to simulate the annual mean ground temperature distribution over the whole Tibetan Plateau. Taking the annual average ground temperature of 0.5 ℃ as the boundary between permafrost and seasonal permafrost, the boundary between discontinuous Permafrost on the plateau and island Permafrost on the plateau is delimited by referring to the map of ice and snow permafrost in China (1:4 million) (Shi Yafeng et al., 1988); in addition, the division map of Permafrost on the big and small Xing'an Mountains in the Northeast (Guo Dongxin et al., 1981), the distribution map of permafrost and underground ice around the Arctic (b According to rown et al. 1997) and the latest field survey data, the Permafrost Boundary in Northeast China has been revised; the Permafrost Boundary in Northwest mountains mostly uses the boundary defined in the map of ice and snow permafrost in China (1:4 million) (Shi Yafeng et al., 1988). According to the data, the area of permafrost in China is about 1.75 × 106km2, accounting for about 18.25% of China's territory. Among them, alpine permafrost is 0.29 × 106km2, accounting for about 3.03% of China's territory. For more information, please refer to the specification of "1:4 million map of glacial and frozen deserts in China" (Institute of environment and Engineering in cold and dry areas, Chinese Academy of Sciences, 2006)
WANG Tao
1. The data is digitized in the map of the development degree of desertification in daqintara (1974) from the drawing. The specific information of the map is as follows: * chief editor: zhu zhenda, qiu xingmin * editor: wang yimou * drawing: feng yu-sun, yao fa-fen, wu wei, wang jianhua, wang zhou-long * cartographic unit: desert laboratory, Chinese academy of sciences * publishing house: xi 'an map publishing house, unified isbn: 12461.26 二. The data is stored in ESRI Shapefile format, including the following layers: 1, * desertification development degree map (1974) : desertification1974.shp 2, * double river: river_double-shp 3, * single river: river_single-shp 4, Road: SHP 5, Lake: lake.shp 6, street: Stree. SHP 7, Railway: Railway. SHP 8, forest belt: Tree_networks 9. Residential land: residential. SHP 10. Map: map_margin.shp 三, desertification development degree figure property fields and encoding attribute: (1) desertification degree (Type) : a flow of sand (Semi - shifting Sandy Land), sand form class (Shapes), grass (Grassland), forest Land, Woodland and forest density (W_density), the cultivated Land (Farmland) (2) sand Shapes: Barchan Dunes, Flat Sandy Land, undulated Sandy Land, Vegetated Dunes (3) the grass (Grassland) (4) Woodland: Woodland. (5) woodland density (W_density): Sparse Woodlot (6) Farmland: Dryfarming and Abandoned Farmland, Irrigated Fields
WANG Jianhua, ZHU Zhenda, QIU Xingmin, FENG Yusun, YAO Fafen
1. The data is digitized in the map of the development degree of desertification in daqintara (1958) from the drawing. The specific information of the map is as follows: * chief editor: zhu zhenda, qiu xingmin * editor: wang yimou * drawing: feng yu-sun, yao fa-fen, wu wei, wang jianhua, wang zhou-long * cartographic unit: desert laboratory, Chinese academy of sciences * publishing house: xi 'an map publishing house, unified isbn: 12461.26 二. The data is stored in ESRI Shapefile format, including the following layers: 1, * desertification development degree map (1958) : desertification1958.shp 2, * double river: river_double-shp 3, * single river: river_single-shp 4, Road: SHP 5, Lake: lake.shp 6, street: Stree. SHP 7, Railway: Railway. SHP 8, forest belt: Tree_networks 9. Residential land: residential. SHP 10. Map: map_margin.shp 三, desertification development degree figure property fields and encoding attribute: (1) desertification degree (Type) : a flow of sand (Semi - shifting Sandy Land), sand form class (Shapes), grass (Grassland), forest Land, Woodland and forest density (W_density), the cultivated Land (Farmland) (2) sand Shapes: Barchan Dunes, Flat Sandy Land, undulated Sandy Land, Vegetated Dunes (3) the grass (Grassland) (4) Woodland: Woodland. (5) woodland density (W_density): Sparse Woodlot (6) Farmland: Dryfarming and Abandoned Farmland, Irrigated Fields
WANG Jianhua, ZHU Zhenda, QIU Xingmin, YAO Fafen, FENG Yusun
一. An overview This data set is a 1:100,000 distribution map of China's deserts as the data source, and it is tailored according to the river basin boundary. It mainly reflects the geographical distribution, area size, mobility and fixation degree of deserts, sandy land and gobi in the upper reaches of the Yellow River.The information source of this data set is Landsat TM image in 2000. Using remote sensing and geographic information system technology, according to the requirements of 1:100,000 scale thematic mapping, the thematic mapping of China's deserts, sandlands and gobi was carried out. 二. Data processing instructions This data set takes the 1:100,000 distribution map of China's deserts as the data source and is tailored according to the basin boundary.The information source of this data set is Landsat TM image in 2000. Using remote sensing and geographic information system technology, according to the requirements of 1:100,000 scale thematic mapping, the thematic mapping of China's deserts, sandlands and gobi was carried out.According to the system design requirements and related standards, the input data is standardized and uniformly converted into various data input standard formats. 三. data content description This data set is divided into desert and non-desert category, the non-desert code is 999. The desert is divided into three categories, namely desert (land), gobi and saline-alkali land, and the classification code is 23410, 2342000 and 2343000 respectively.Among them, deserts (land) are divided into four categories, namely mobile desert (land), semi-mobile desert (land), semi-fixed desert (land) and fixed desert (land). The classification codes are 2341010, 2341020, 2341030 and 2341040. 四. Data usage instructions It can make the resources, environment and other related workers understand the desert type, area and distribution in the upper reaches of the Yellow River, and make the classification and evaluation of the wind and sand hazards in ningmeng river section.
XUE Xian, DU Heqiang
This data is digitized from the "Naiman Banner Desertification Types and Land Consolidation Zoning Map" of the drawing. The specific information of this map is as follows: * Editors: Zhu Zhenda and Qiu Xingmin * Editor: Feng Yushun * Re-photography and Mapping: Feng Yushun, Liu Yangxuan, Wen Zi Xiang, Yang Taiyun, Zhao Aifen, Wang Yimou, Li Weimin, Zhao Yanhua, Wang Jianhua * Field trips: Qiu Xingmin and Zhang Jixian * Cartographic unit: compiled by Desert Research Office of Chinese Academy of Sciences * Publishing House: Shanghai China Printing House * Scale: 1: 150000 * Published: May 1984 * Legend: Severe Desertification Land, Intensely Developed Desertification Land, Developing Desertification Land, Potential Desertification Land, Non-desertification Land, Fluctuating Sandy Loess Plain, Forest and Shrub, Saline-alkali Land, Mountain Land, Cultivated Land and Midian Land 2. File Format and Naming Data is stored in ESRI Shapefile format, including the following layers: Naiman banner desertification type map, rivers, roads, reservoirs, railways, zoning 3. Data Attributes Desertification Class Vegetation Background Class Desertified land and cultivated sand dunes under development. Midland in Saline-alkali Land Severely desertified land Reservoir Trees and shrubbery Mountain Strongly developing desertified land Potential desertified land Lakes Non-desertification land Undulating sand-loess plain 2. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
ZHU Zhenda, QIU Xingmin, FENG Yusun, ZHAO Yanhua, WANG Jianhua, ZHAO Aifen, WANG Yimou, LI Weimin, ZHANG Jixian, LIU Yangxuan, WEN Zixiang
The interaction mechanism project between major road projects and the environment in western mountainous areas belongs to the major research plan of "Environment and Ecological Science in Western China" of the National Natural Science Foundation. The person in charge is Cui Peng researcher of Chengdu Mountain Disaster and Environment Research Institute, Ministry of Water Resources, Chinese Academy of Sciences. The project runs from January 2003 to December 2005. Data collected for this project: Engineering and Environmental Centrifugal Model Test Data (word Document): Consists of six groups of centrifugal model test data, namely: Test 1. Centrifugal Model Test of Soil Cutting High Slope (6 Groups) Test 2. Centrifugal Model Experiment of Backpressure for Slope Cutting and Filling (4 Groups) Test 3. Centrifugal Model Experimental Study on Anti-slide Piles and Pile-slab Walls (10 Groups) Test 4. Centrifugal Model Tests for Different Construction Timing of Slope (5 Groups) Test 5. Migration Effect Centrifugal Model Test (11 Groups) Test 6. Centrifugal Model Test of Water Effect on Temporary Slope (8 Groups) The purpose, theoretical basis, test design, test results and other information of each test are introduced in detail.
CUI Peng
The research project on the breeding strategies of desert plants in hexi region of gansu province belongs to the national natural science foundation "environment and ecological science in western China" major research plan, led by professor an lizhe of lanzhou university. The project runs from January 2004 to December 2007. Remittance data of the project: 1. Effect of super - dry preservation on seeds The data is in Word format and contains a lot of analysis charts. A comparative study was conducted on the changes of vitality of overlord seeds and rhizoma coptidis seeds stored at 45℃, room temperature and 15℃ respectively, and the effects of dampening treatment, artificial aging and ultra-dry treatment on electrical conductivity and physiological activity indexes of seeds were conducted.The details are as follows: Energy change of seeds was preserved at 45℃ FIG. 1 germination rate (%) of overlord seeds stored at 45℃、FIG. 2 germination index of overlord seeds stored at 45℃、FIG. 3 vigor index of the seeds stored at 45℃. Change of seed vigor at room temperature FIG. 4 germination rate (%) of overlord seeds stored at room temperature、FIG. 5 germination index of overlord seeds stored at room temperature、FIG. 6 vigor index of overlord seeds preserved at room temperature. 15℃ preservation of seed vitality changes FIG. 7 germination rate of overlord seeds stored at 15℃ (%)、FIG. 8 germination index of alba seeds stored at 15℃、FIG. 9 vigor index of the seeds stored at 15℃. Changes of seed vigor of rhizoma coryzae at 45℃ FIG. 10 germination rate (%) of rhizoma coptidis seeds stored at 45℃、FIG. 11 germination index of the seeds of rhizoma coryzae at 45℃、FIG. 12 vigor index of seeds of corydalis corydalis preserved at 45℃. Changes of seed vigor of rhizoma coryzae at room temperature FIG. 13 germination rate (%) of rhizoma corydalis seeds preserved at room temperature、FIG. 14 germination index of seeds preserved at room temperature、FIG. 15 vigor index of seeds of corydalis corydalis preserved at room temperature Changes of seed vigor of rhizoma corydalis in 15℃ storage FIG. 16 germination rate (%) of rhizoma coptidis seeds stored at 15℃、FIG. 17 germination index of the seeds of rhizoma coptidis preserved at 15℃、FIG. 18 vigor index of seeds of corydalis sativus preserved at 15℃ Effect of slow wetting treatment on relative conductivity of seeds FIG. 28 changes in the relative conductivity of arrobatus seeds without dampening treatment、FIG. 29 changes of relative conductivity of overlord seeds after slow wetting treatment、FIG. 31 changes of relative electrical conductivity of seeds of rhizoma coryzae after dampening treatment Effects of artificial aging treatment on seed of archaea chinensis l FIG. 34 effects of artificial aging treatment on germination rate of overlord seeds、FIG. 35 effect of artificial aging treatment on seed vigor index、FIG. 36 effects of artificial aging treatment on the relative conductivity of overlord seeds Effects of artificial aging treatment on seeds of coryza sativa l FIG. 37 effect of artificial aging treatment on germination rate of seeds of coryza sativa l、FIG. 38 effect of artificial aging treatment on seed vigor index of rhizoma coryzae、FIG. 39 effects of artificial aging treatment on the relative electrical conductivity of the seeds of coryza sativa l Effects of artificial aging on the content of aldehydes in seeds after 15 days FIG. 52 effects of artificial aging treatment on the content of aldehydes in the seeds after 15 day、FIG. 53 effects of artificial aging treatment on the content of aldehydes in seeds of prunus chinense after 15 days, Effect of super - dry treatment on physiological activity index of seed Table 31 effect of super - dry treatment on physiological activity index of monkshood seed Table 32 influence of hyperdrying treatment on physiological activity index of seeds of coryza sativa l 2. Micromorphological and structural characteristics of the skin of desert plants (including experimental conditions, microscopic images of the skin microstructure and analysis of distribution of 47 plants, genus, species code, list of length and weight of long and short axes of seeds, and list of seed elements)
AN lizhe
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn