Recently Updated

More
Annual glacier mass balance data on Tibetan Plateau (2020-2021)
Annual glacier mass balance data on Tibetan Plateau (2020-2021)

Glacial mass balance is one of the most important glaciological parameters to characterize the accumulation and ablation of glaciers. Glacier mass balance is the link between climate and glacier change, and it is the direct reflection of glacier to the regional climate. Climate change leads to the corresponding changes in the material budget of glaciers, which in turn can lead to changes in the movement characteristics and thermal conditions of glaciers, and then lead to changes in the location, area and ice storage of glaciers. The monitoring method is to set a fixed mark flower pole on the glacier surface and regularly monitor the distance between the glacier surface and the top of the flower pole to calculate the amount of ice and snow melting; In the accumulation area, the snow pits or boreholes are excavated regularly to measure the snow density, analyze the characteristics of snow granular snow additional ice layer, and calculate the snow accumulation; Then, the single point monitoring results are drawn on the large-scale glacier topographic map, and the instantaneous, seasonal (such as winter and summer) and annual mass balance components of the whole glacier are calculated according to the net equilibrium contour method or contour zoning method. The data set is the annual mass balance data of different representative glaciers in the Qinghai Tibet Plateau and Tianshan Mountains, in millimeter water equivalent.

Created Time:2022-02-17
Hourly meteorological forcing & land surface state dataset of Tibet Plateau with 10 km spatial resolution (2000-2010)
Hourly meteorological forcing & land surface state dataset of Tibet Plateau with 10 km spatial resolution (2000-2010)

The near surface atmospheric forcing and surface state dataset of the Tibetan Plateau was yielded by WRF model, time range: 2000-2010, space range: 25-40 °N, 75-105 °E, time resolution: hourly, space resolution: 10 km, grid number: 150 * 300. There are 33 variables in total, including 11 near surface atmospheric variables: temperature at 2m height on the ground, specific humidity at 2m height on the ground, surface pressure, latitudinal component of 10m wind field on the ground, longitudinal component of 10m wind field on the ground, proportion of solid precipitation, cumulative cumulus convective precipitation, cumulative grid precipitation, downward shortwave radiation flux at the surface, downward length at the surface Wave radiation flux, cumulative potential evaporation. There are 19 surface state variables: soil temperature in each layer, soil moisture in each layer, liquid water content in each layer, heat flux of snow phase change, soil bottom temperature, surface runoff, underground runoff, vegetation proportion, surface heat flux, snow water equivalent, actual snow thickness, snow density, water in the canopy, surface temperature, albedo, background albedo, lower boundary Soil temperature, upward heat flux (sensible heat flux) at the surface and upward water flux (sensible heat flux) at the surface. There are three other variables: longitude, latitude and planetary boundary layer height.

Created Time:2019-01-25
Dataset of passive microwave SSM / I and SSMIS brightness temperature in China (1987-2015)
Dataset of passive microwave SSM / I and SSMIS brightness temperature in China (1987-2015)

This dataset mainly includes the twice a day (ascending-descending orbit) brightness temperature (K) of the space-borne microwave radiometers SSM / I and SSMIS carried by the US Defense Meteorological Satellite Program satellites (DMSP-F08, DMSP-F11, DMSP-F13, and DMSP-F17), time coverage from September 15, 1987 to December 31, 2015. The SSM/I brightness temperature of DMSP-F08, DMSP-F11 and DMSP-F13 include 7 channels: 19.35H, 19.35V, 22.24V, 37.05H, 37.05V, 85.50H and 85.50V; The SSMIS brightness temperature observation of DMSP-F17 consists of seven channels: 19.35H, 19.35V, 22.24V, 37.05H, 37.05V, 91.66H and 91.66v. Among them, DMSP-F08 satellite brightness temperature coverage time is from September 15, 1987 to December 31, 1991; DMSP-F11 satellite brightness temperature coverage time is from January 1, 1992 to December 31, 1995; The coverage time of DMSP-F13 satellite brightness temperature is from January 1, 1996 to April 29, 2009; The coverage time of DMSP-F17 satellite brightness temperature is from January 1, 2009 to December 31, 2015. 1. File format and naming: The brightness temperature is stored separately in units of years, and each directory is composed of remote sensing data files of each frequency, and the SSMIS data also contains the .TIM time information file. The data file names and their naming rules are as follows: EASE-Fnn-ML / HyyyydddA / D.subset.ccH / V (remote sensing data) EASE-Fnn-ML / HyyyydddA / D.subset.TIM (time information file) Among them: EASE stands for EASE-Grid projection method; Fnn stands for satellite number (F08, F11, F13, F17); ML / H stands for multi-channel low-resolution and multi-channel high-resolution respectively; yyyy represents the year; ddd represents Julian Day of the year (1-365 / 366); A / D stands for ascending (A) and descending (D) respectively; subset represents brightness temperature data in China; cc represents frequency (19.35GHz, 22.24 GHz, 37.05GHz, (85.50GHz, 91.66GHz); H / V stands for horizontal polarization (H) and vertical polarization (V), respectively. 2. Coordinate system and projection: The projection method of this data set is EASE-Grid, which is an equal area secant cylindrical projection, and the double standard parallels are 30 ° north and south. For more information about EASE-GRID, please refer to http://www.ncgia.ucsb.edu/globalgrids-book/ease_grid/. If you need to convert the EASE-Grid projection to Geographic projection, please refer to the ease2geo.prj file, the content is as follows: Input projection cylindrical units meters parameters 6371228 6371228 1 / * Enter projection type (1, 2, or 3) 0 00 00 / * Longitude of central meridian 30 00 00 / * Latitude of standard parallel Output Projection GEOGRAPHIC Spheroid KRASovsky Units dd parameters end 3. Data format: Stored as integer binary, Row number: 308 *166,each data occupies 2 bytes. The actual data stored in this dataset is the brightness temperature * 10. After reading the data, you need to divide by 10 to get the real brightness temperature. 4. Data resolution: Spatial resolution: 25.067525km, 12.5km (SSM / I 85GHz, SSMIS 91GHz) Time resolution: daily, from 1978 to 2015. 5. Spatial range: Longitude: 60.1 ° -140.0 ° east longitude; Latitude: 14.9 ° -55.0 ° north latitude. 6. Data reading: Remote sensing image data files in each set of data can be opened in ArcMap, ENVI and ERDAS software.

Created Time:2016-06-15
Passive microwave SSM/I brightness temperature dataset for China (1987-2007)
Passive microwave SSM/I brightness temperature dataset for China (1987-2007)

This data set includes the microwave brightness temperatures obtained by the spaceborne microwave radiometer SSM/I carried by the US Defense Meteorological Satellite Program (DMSP) satellite. It contains the twice daily (ascending and descending) brightness temperatures of seven channels, which are 19H, 19V, 22V, 37H, 37V, 85H, and 85V. The Specialized Microwave Imager (SSM/I) was developed by the Hughes Corporation of the United States. In 1987, it was first carried into the space on the Block 5D-/F8 satellite of the US Defense Meteorological Satellite Program (DMSP) to perform a detection mission. In the 10 years from when the DMSP soared to orbit in 1987 to when the TRMM soared to orbit in 1997, the SSM/I was the world's most advanced spaceborne passive microwave remote sensing detection instrument, having the highest spatial resolution in the world. The DMSP satellite is in a near-polar circular solar synchronous orbit; the elevation is approximately 833 km, the inclination is 98.8 degrees, and the orbital period is 102.2 minutes. It passes through the equator at approximately 6:00 local time and covers the whole world once every 24 hours. The SSM/I consists of seven channels set at four frequencies, and the center frequencies are 19.35, 22.24, 37.05, and 85.50 GHz. The instrument actually comprises seven independent, total-power, balanced-mixing, superheterodyne passive microwave radiometer systems, and it can simultaneously measure microwave radiation from Earth and the atmospheric systems. Except for the 22.24 GHz frequency, all the frequencies have both horizontal and vertical polarization states. Some Eigenvalues of SSM/I Channel Frequency (GHz) Polarization Mode (V/H) Spatial Resolution (km * km) Footprint Size (km) 19V 19.35 V 25×25 56 19H 19.35 H 25×25 56 22V 22.24 V 25×25 45 37V 37.05 V 25×25 33 37H 37.05 H 25×25 33 85V 85.50 V 12.5×12.5 14 85H 85.50 H 12.5×12.5 14 1. File Format and Naming: Each group of data consists of remote sensing data files, .JPG image files and .met auxiliary information files as well as .TIM time information files and the corresponding .met time information auxiliary files. The data file names and naming rules for each group in the SSMI_Grid_China directory are as follows: China-EASE-Fnn-ML/HaaaabbbA/D.ccH/V (remote sensing data); China-EASE-Fnn -ML/HaaaabbbA/D.ccH/V.jpg (image file); China-EASE-Fnn-ML/HaaaabbbA/D.ccH/V.met (auxiliary information document); China-EASE-Fnn-ML/HaaaabbbA/D.TIM (time information file); and China-EASE- Fnn -ML/HaaaabbbA/D.TIM.met (time information auxiliary file). Among them, EASE stands for EASE-Grid projection mode; Fnn represents carrier satellite number (F08, F11, and F13); ML/H represents multichannel low resolution and multichannel high resolution; A/D stands for ascending (A) and descending (D); aaaa represents the year; bbb represents the Julian day of the year; cc represents the channel number (19H, 19V, 22V, 37H, 37V, 85H, and 85V); and H/V represents horizontal polarization (H) and vertical polarization (V). 2. Coordinate System and Projection: The projection method is an equal-area secant cylindrical projection, and the double standard latitude is 30 degrees north and south. For more information on EASE-GRID, please refer to http://www.ncgia.ucsb.edu/globalgrids-book/ease_grid/. If you need to convert the EASE-Grid projection method into a geographic projection method, please refer to the ease2geo.prj file, which reads as follows. Input Projection cylindrical Units meters Parameters 6371228 6371228 1 /* Enter projection type (1, 2, or 3) 0 00 00 /* Longitude of central meridian 30 00 00 /* Latitude of standard parallel Output Projection GEOGRAPHIC Spheroid KRASovsky Units dd Parameters End 3. Data Format: Stored as binary integers, Row number: 308 *166,each datum occupies 2 bytes. The data that are actually stored in this data set are the brightness temperatures *10, and after reading the data, they need to be divided by 10 to obtain true brightness temperature. 4. Data Resolution: Spatial resolution: 25 km, 12.5 km (SSM/I 85 GHz); Time resolution: day by day, from 1978 to 2007. 5. The Spatial Coverage: Longitude: 60°-140° east longitude; Latitude: 15°-55° north latitude. 6. Data Reading: Each group of data includes remote sensing image data files, .JPG image files and .met auxiliary information files. The JPG files can be opened with Windows image and fax viewers. The .met auxiliary information files can be opened with notepad, and the remote sensing image data files can be opened in ENVI and ERDAS software.

Created Time:2011-03-12

Data Resource Search