Current Browsing: Terrestrial Surface Remote Sensing


Domestic high-resolution 2-50m fusion orthophoto validation data set in key rivers and lakes research area of Qinghai Tibet Plateau (2015-2020)

Data content: this data set is the historical archived satellite data of the domestic high score series (GF1 / 2 / 3 / 4) in the key river and lake research areas of the Qinghai Tibet Plateau from 2015 to 2020, which can cover the typical river and lake areas for effective monitoring. The time range of the data is from 2015 to 2020. Data source and processing method: the data are level 1 products. After equalizing radiation correction, the changes affecting the sensors are corrected by the equalizing functions of different detectors. Some data are based on the Landsat 8 images in the same period as the base map, and control points are selected for geometric correction of the images. Then, orthophoto correction is carried out based on DEM data, and band fusion processing is carried out for the corresponding data. Data quality description: the Gaofen series satellites are processed by the China Resources Satellite Application Center. There are raw data received by the satellite ground receiving station of the Chinese Academy of Sciences and processed products at all levels. Among them, level 1a (pre-processing level radiometric correction image product): image data processed by data analysis, uniform radiometric correction, noise removal, MTFC, CCD splicing, band registration, etc; And provide RPC files for satellite direct attitude orbit data production. Refer to the data website of China Resources Satellite Application Center for details. Data application achievements and prospects: the data are domestic high-resolution data with high resolution, which can be used to monitor the changes of the Qinghai Tibet Plateau as a water tower in Asia and the generated images, and test the accuracy of other data in the region

2022-08-29

Surface information of Qinghai-Tibet engineering corridor (2014-2020)

The dataset is the remote sensing image data ofGF-1 satellite in the Qinghai-Tibet engineering corridor obtained by China High Resolution Earth Observation Center. After the fusion processing of multispectral and panchromatic bands, the image data with a spatial resolution of 2 m is obtained. In the process of obtaining ground vegetation information, the classification technology of combining object-oriented computer automatic interpretation and manual interpretation is adopted, The object-oriented classification technology is to collect adjacent pixels as objects to identify the spectral elements of interest, make full use of high-resolution panchromatic and multispectral data space, texture and spectral information to segment and classify, and output high-precision classification results or vectors. In actual operation, the image is automatically extracted by eCognition software. The main processes are image segmentation, information extraction and accuracy evaluation. After verification with the field survey, the overall extraction accuracy is more than 90%.

2022-08-29

Daily 1-km all-weather land surface temperature dataset for Western China (TRIMS LST-TP; 2000-2021) V2

The Qinghai Tibet Plateau is a sensitive region of global climate change. Land surface temperature (LST), as the main parameter of land surface energy balance, characterizes the degree of energy and water exchange between land and atmosphere, and is widely used in the research of meteorology, climate, hydrology, ecology and other fields. In order to study the land atmosphere interaction over the Qinghai Tibet Plateau, it is urgent to develop an all-weather land surface temperature data set with long time series and high spatial-temporal resolution. However, due to the frequent cloud coverage in this region, the use of existing satellite thermal infrared remote sensing land surface temperature data sets is greatly limited. Compared with the previous version released in 2019, Western China Daily 1km spatial resolution all-weather land surface temperature data set (2003-2018) V1, this data set (V2) adopts a new preparation method, namely satellite thermal infrared remote sensing reanalysis data integration method based on new land surface temperature time decomposition model. The main input data of the method are Aqua MODIS LST products and GLDAS data, and the auxiliary data include vegetation index and surface albedo provided by satellite remote sensing. This method makes full use of the high frequency and low frequency components of land surface temperature and the spatial correlation of land surface temperature provided by satellite thermal infrared remote sensing and reanalysis data. The evaluation results show that this data set has good image quality and accuracy, which is not only seamless in space, but also highly consistent with the amplitude and spatial distribution of 1 km daily Aqua MODIS LST products widely used in current academic circles. When MODIS LST was used as the reference value, the mean deviation (MBE) of the data set in daytime and nighttime was -0.28 K and -0.29 K respectively, and the standard deviation (STD) of the deviation was 1.25 K and 1.36 K respectively. The test results based on the measured data of six stations in the Qinghai Tibet Plateau and Heihe River Basin show that under clear sky conditions, the data set is highly consistent with the measured LST in daytime / night, and its MBE is -0.42-0.25 K / - 0.35-0.19 K; The root mean square error (RMSE) was 1.03 ~ 2.28 K / 1.05 ~ 2.05 K; Under the condition of non clear sky, the MBE of this data set in daytime / night is -0.55 ~ 1.42 K / - 0.46 ~ 1.27 K; The RMSE was 2.24-3.87 K / 2.03-3.62 K. Compared with the V1 version of the data, the two kinds of all-weather land surface temperature show the characteristics of seamless (i.e. no missing value) in the spatial dimension, and in most areas, the spatial distribution and amplitude of the two kinds of all-weather land surface temperature are highly consistent with MODIS land surface temperature. However, in the region where the brightness temperature of AMSR-E orbital gap is missing, the V1 version of land surface temperature has a significant systematic underestimation. The mass of trims land surface temperature is close to that of V1 version outside AMSR-E orbital gap, while the mass of trims is more reliable inside the orbital gap. Therefore, it is recommended that users use V2 version. The time span of this data set is from 2000 to 2021 and will be updated continuously; The time resolution is twice a day (corresponding to the two transit times of aqua MODIS in the daytime and at night); The spatial resolution is 1 km. In order to facilitate the majority of colleagues to carry out targeted research around the Qinghai Tibet Plateau and its adjacent areas, and reduce the workload of data download and processing, the coverage of this data set is limited to Western China and its surrounding areas (72 ° E-104 ° E,20 ° N-45 ° N)。 Therefore, this dataset is abbreviated as trims lst-tp (thermal and reality integrating modem resolution spatial seamless LST – Tibetan Plateau) for user's convenience.

2022-05-16

Daily 1-km all-weather land surface temperature dataset for the Chinese landmass and its surrounding areas (TRIMS LST; 2000-2021)

Land surface temperature (LST) is one of the important parameters of the interface between the earth's surface and atmosphere. It is not only the direct reflection of the interaction between the surface and the atmosphere, but also has a complex feedback effect on the earth atmosphere process. Therefore, land surface temperature is not only a sensitive indicator of climate change and an important prerequisite for mastering the law of climate change, but also a direct input parameter of many models, which has been widely used in many fields, such as meteorology, climate, environmental ecology, hydrology and so on. With the deepening and refinement of Geosciences and related fields, there is an urgent need for all weather LST based on satellite remote sensing. The generation principle of this dataset is a satellite thermal infrared remote sensing reanalysis data integration method based on a new land surface temperature time decomposition model. The main input data of the method are Aqua MODIS LST products and GLDAS data, and the auxiliary data include vegetation index and surface albedo provided by satellite remote sensing. The method makes full use of the high-frequency and low-frequency components of land surface temperature and the spatial correlation of land surface temperature provided by satellite thermal infrared remote sensing and reanalysis data, and finally reconstructs a high-quality all-weather land surface temperature data set. The evaluation results show that this data set has good image quality and accuracy, which is not only seamless in space, but also highly consistent with the amplitude and spatial distribution of 1 km daily Aqua MODIS LST products widely used in current academic circles. When MODIS LST is used as reference, the mean deviation (MBE) of the data set is 0.08k to 0.16k, and the standard deviation of deviation (STD) is 1.12k to 1.46k. Compared with the daily 1km AATSR LST product released by ESA, the MBE and STD of the product are -0.21k to 0.25k and 1.27k to 1.36k during the day and night. Based on the measured data of 15 stations in Heihe River Basin, Northeast China, North China and South China, the test results show that the MBE is -0.06k to -1.17k, and the RMSE is 1.52k to 3.71k, and there is no significant difference between clear sky and non clear sky. The time resolution of this data set is twice a day, the spatial resolution is 1km, and the time span is from 2000 to 2021; The spatial scope includes the main areas of China's land (including Hong Kong, Macao and Taiwan, excluding the islands in the South China Sea) and the surrounding areas (72 ° E-135 ° E,19 ° N-55 ° N)。 This dataset is abbreviated as trims LST (thermal and reality integrating modem resolution spatial sealing LST) for users to use. It should be noted that the spatial subset of trims LST, trims lst-tp (1 km daily land surface temperature data set in Western China, trims lst-tp; 2000-2021) V2) has also been released in the national Qinghai Tibet Plateau scientific data center to reduce the workload of data download and processing for relevant users.

2022-05-16

Aboveground biomass data set of temperate grassland in northern China (1993-2019)

Based on a large number of measured aboveground biomass data of grassland, the temperate grassland types were divided according to the vegetation type map of China in 1980s Based on the Landsat remote sensing data of engine platform, the random forest model of grassland aboveground biomass and remote sensing data was constructed for different grassland types. On the basis of reliable verification, the annual aboveground biomass of grassland from 1993 to 2019 was estimated, and the annual spatial data set of aboveground biomass of temperate grassland in Northern China from 1993 to 2019 was formed. Aboveground biomass is defined as the total amount of organic matter of vegetation living above the ground in unit area. The original grid value has been multiplied by a factor of 100, unit: 0.01 g / m2 (g / m2). This data set can provide a scientific basis for the dynamic monitoring and evaluation of temperate grassland resources and ecological environment in northern China.

2022-04-18

Landsat surface reflectance products over the Tibetan Plateau (1980s-2019)

The dataset is the Landsat surface reflectance products from 1980s to 2019 over the Tibetan Plateau, it is the key input parameter of many surface geophysical parameters (such as leaf area index, chlorophyll and biomass). The dataset is retrieved based on Landsat level 4 products from China satellite remote sensing ground station, and it is retrived by using the atmospheric correction based on 6S model and BRDF correction model based on C-factor .The RMSE of geometric correction is less than 12m and the RMSD of surface reflectance is less than 5%. And the corresponding production of quality identification documents (QA) is also generated to identify the cloud, ice and snow.The Landsat surface reflectance play an important role in forest, water resources, climate change.

2022-04-18

8 km resolution evapotranspiration dataset of the Tibetan Plateau (1990-2015)

Evapotranspiration over the Qinghai Tibet Plateau is calculated by etwatch, a land surface evapotranspiration remote sensing model based on multi-scale and multi-source data. Etwatch adopts the method of combining the residual term method with P-M formula to calculate evapotranspiration. Firstly, according to the characteristics of the data image, the suitable model is selected to retrieve the evapotranspiration on a sunny day; the remote sensing model is often lack of data because the weather conditions can not obtain a clear image. In order to obtain the daily continuous evapotranspiration, the penman Monteith formula is introduced, and the evapotranspiration results on a sunny day are regarded as the "key frame", and the surface impedance information of the key frame is used as the basis to construct the surface impedance Based on the daily meteorological data, the time series data of evapotranspiration are reconstructed. Through the data fusion model, the high spatial and temporal resolution evapotranspiration data set is constructed by combining the low and medium resolution evapotranspiration temporal variation information with the high resolution evapotranspiration spatial difference information, so as to generate the 8 km resolution evapotranspiration of the Qinghai Tibet Plateau Data sets (1990-2015).

2022-04-18

FY-4A terrestrial solar radiation product data set of the Qinghai Tibet Plateau (2018-2020)

Surface solar irradiance (SSI) is one of the products of FY-4A L2 quantitative inversion. It covers a full disk without projection, with a spatial resolution of 4km and a temporal resolution of 15min (there are 40 observation times in the whole day since 20180921, except for the observation of each hour, there is one observation every 3hr before and after the hour), and the spectral range is 0.2µ m~5.0 µ m. The output elements of the product include total irradiance, direct irradiance on horizontal plane and scattered irradiance, the effective measurement ranges between 0-1500 w / m2. The qualitative improvement of FY-4A SSI products in coverage, spatial resolution, time continuity, output elements and other aspects makes it possible to further carry out its fine application in solar energy, agriculture, ecology, transportation and other professional meteorological services. The current research results show that the overall correlation of FY-4A SSI product in China is more than 0.75 compared with ground-based observation, which can be used for solar energy resource assessment in China.

2022-04-18

Long time series ecological background map of Qinghai Tibet Plateau (1990-2015)

Based on the medium resolution long time series remote sensing image Landsat, the data set obtained six periods of ecosystem type distribution maps of the Qinghai Tibet Plateau in 1990 / 1995 / 2002 / 2005 / 2010 / 2015 through image fusion, remote sensing interpretation and data inversion, and made the original ecological base map of the Qinghai Tibet Plateau in 25 years (1990-2015). According to the area statistics of various ecosystems in the Qinghai Tibet Plateau, the area of woodland and grassland decreased slightly, the area of urban land, rural residential areas and other construction land increased, the area of rivers, lakes and other water bodies increased, and the area of permanent glacier snow decreased from 1990 to 2015. The atlas can be used for the planning, design and management of ecological projects in the Qinghai Tibet Plateau, and can be used as a benchmark for the current situation of the ecosystem, to clarify the temporal and spatial pattern of major ecological projects in the Qinghai Tibet Plateau, and to reveal the change rules and regional differences of the pattern and function of the ecosystem in the Qinghai Tibet Plateau.

2022-04-18

Glacier inventory of Qilian Mountain Area (2020)

This dataset contains the glacier outlines in Qilian Mountain Area in 2020. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2020 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2020, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.

2022-04-18