Current Browsing: 2000


1:1,000,000 Geomrphological map of the Heihe River basin (2000)

The geomorphic data of Heihe River are from the geomorphic Atlas of the people's Republic of China (1:1 million). This data is based on remote sensing image and other multi-source data integration and update. The main data used and referenced include: 1) remote sensing image data: TM and 2000's around 1990's nationwide About ETM image; 2) historical geomorphic map: 15 published 1 million geomorphic maps, two sets of 1:4 million geomorphic maps in China, 500000 or 1 million geomorphic sketches in all provinces and cities in China; 3) basic geographic data: 1:250000 basic geographic data and 250000 DEM data in China; 4) geological data: 1:500000 geological map in China; 5) relevant thematic maps: land use map, vegetation map and land resource map And so on. The interpretation method adopts the human-computer interaction method based on ArcGIS, and is carried out according to the interpretation sequence of hierarchical classification: the first layer: plain and mountain; the second layer: basic geomorphic types (28); the third layer: 10 genetic types; the fourth layer: secondary genetic types; the fifth layer: morphological difference classification types; the sixth layer: secondary morphological difference classification types; the seventh layer: slope, slope The eighth layer is the type of geomorphic material determined by material composition or lithology; the ninth layer is the combination of 1-7 layers of map spots. There are 441 geomorphic types and codes. Data fields include: fenfu (view frame number), name (attribute), class (code), sname (administrative division).

2020-06-08

SRTM DEM data of the Heihe River Basin (2000)

SRTM (Shuttle Radar Topography Mission) is by NASA and the national geospatial intelligence agency (NGA) cooperation to build the global 3 d graphics data project.In February 2000, the SRTM system mounted on the U.S. space shuttle endeavour collected radar image data between latitude 60 ° north and latitude 57 ° south, and acquired radar image data covering more than 80% of the world's land surface.After more than two years of processing, the digital terrain elevation model was made. This data set including the heihe river basin SRTM points picture and Mosaic two kinds of data, and the points of the graph is SRTM version 4 data by the CGIAR - CSI (international centre for tropical agriculture, http://srtm.csi.cgiar.org/) treatment, compared with the previous version has greatly improved, including: 1) use a lot of interpolation algorithm, 2) use more auxiliary DEM data to fill the blank spots and blank area, 3) compared with the third version of the data and migration half a yuan.The Mosaic map is obtained by splicing on the basis of sub-map. The sub-charts include srtm_56_04,srtm_56_05,srtm_57_04 and srtm_57_054. The data are 16 bit values representing the elevation value (-/+/32767 m). The maximum positive elevation is 9000 m and the maximum negative elevation is 12,000 m below sea level.Null data is identified by -32767.Divide the file into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees) per 5 latitude and longitude squares.

2020-06-05

Landuse/Landcover data of the Heihe river basin (2000)

China 1:100000 data of land use is a major application in the Chinese Academy of Sciences "five-year" project "the national resources and environment remote sensing macroscopic investigation and study of dynamic organized 19 Chinese Academy of Sciences institute of remote sensing science and technology team, by means of satellite remote sensing, in three years based on Landsat MSS, TM and ETM remote sensing data established China 1:100000 images and vector of land use database.The main contents include: China 1:100,000 land use data;China 1:100,000 land use graph data and attribute data. The data was directly clipped from China's 1:100,000 land-use data.A hierarchical land cover classification system was adopted for the land use data of heihe basin of 1:100,000, and the whole basin was divided into 6 primary categories (arable land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 26 secondary categories.The data type is vector polygon, which is stored in Shape format.There are two types of data projection: WGS84/ALBERS;Data coverage covers the new heihe watershed boundary (lack of outer Mongolia data). Land use classification attributes: The first class type and the second class type attributes encode the spatial distribution position Cultivated paddy field 113 is mainly distributed in alluvial plain, basin and valley Cultivated paddy field 112 distributed in hilly valley narrow valley platform or beach (with irrigation conditions) Cultivated paddy field 111 is mainly distributed in mountain valley narrow valley platform or beach (with better irrigation conditions) Arable land 124 is mainly distributed in mountainous areas, the slope is generally more than 25 degrees (belongs to the steep slope hanging land), should be returned to forest. Cultivated dry land 123 is mainly distributed in basins, piedmont belts, river alluvial, diluvial or lacustrine plains (water shortage and poor irrigation conditions). Cultivated dry land 122 is mainly distributed in hilly areas (shaanxi, gan, ning, qing).In general, the plot is distributed on gentle slopes and x and sockets of hills. Arable land 121 is mainly distributed in the mountainous area, with an elevation of 4000 meters below the slope (gentle slope, mountainside, steep slope platform, etc.) and mountain front belt. Woodlands have woodlands (trees) 21 mainly distributed in the mountains (below 4000 meters above sea level) or in the slope, valley two slopes, mountain tops, plains.In qinghai nanshan, qilian mountains are. Woodland shrub 22 is mainly distributed in the higher mountain areas (below 4500 m), most of the distribution of hillside and valley and sand. Forest dredging 23 mainly distributed in the mountains, hills, plains and sandy land, gobi (soil, gravel) edge. Other woodlands 24 are mainly distributed in the oasis ridge, river, roadside and rural residential areas around. Grassland 31 is generally distributed in mountainous areas (gentle slopes), hills (steep slopes) and interriver beaches, gobi desert, sandy hills, etc. The covered grassland 32 is mainly distributed in dry places (next door low-lying land and sandy hills, etc.). Grassland low cover grassland 33 mainly grows in drier places (loess hills and sandy edges). The river channel 41 is mainly distributed in the plain, the cultivated land between the rivers and the valleys in the mountains. Water lakes are mainly distributed in low-lying areas. The reservoirs are mainly distributed in the intermountain lowlands and intersandy hills in qinghai province. Water area glaciers and permanent snow 44 mainly distributed in the plain, the valley between the river, there are surrounding residents and arable land. Waters and beaches are mainly distributed on the top of (over 4000) mountains.

2020-03-15

Datasets for the SWAT model in Heihe Rriver Basin

This data includes the basic terrain data, soil data, meteorological data, land use / land cover data, etc. needed for SWAT model operation. All maps and relevant point coordinates (meteorological station, hydrological station) adopt the coordinate system of Gauss Kruger projection which is consistent with the basic topographic map of our country. Data content includes: a) The basic topographic data include DEM and river network. The size of DEM grid is 50 * 50m, and the drainage network is manually digitized from 1:100000 topographic map. b) Soil data: including soil physics, soil chemistry and spatial distribution of soil types. The scale of digital soil map is 1:1 million, which is converted into grid format of ESRI, with grid size of 50 * 50m. Each soil profile can be divided into up to 10 layers. The sampling index of soil texture required by the model adopts the American Standard. The parameters are from the second National Soil Census data and related literature. c) Meteorological data: (1) Temperature: the data of daily maximum temperature, daily minimum temperature, wind speed and relative humidity are from the daily observation data of Qilian, Shandan, tole, yeniugou and Zhangye meteorological stations in and around the basin, with the period from 1999 to 2001. (2) Precipitation: the rainfall data comes from five hydrological stations in and around the basin, i.e. OBO (1990-1996), Sunan (1990-2000), Qilian (1990-2000), Yingluoxia (1990-2000), zamashk (1990-2000), Shandan (1999-2001), tole (1999-2001), yeniugou (1999-2001), Zhangye (1999-2001) and Qilian County (1999-2001) Observation data. (3) Wind speed and relative humidity: wind speed and relative humidity come from the daily observation data of 5 meteorological stations in Shandan, tole, yeniugou, Zhangye and Qilian county. The period is from 1999 to 2001. (4) Solar radiation: solar radiation has no corresponding observation data and is generated by model simulation. d) Land use / land cover: 1995 land use data, scale 1:100000. Convert it to grid format of ESRI, with grid size of 50 * 50m. e) Meteorological data simulation tool (weather generator) database: the weather data simulation tool of SWAT model can simulate and calculate the daily meteorological input data required by the model operation according to the monthly statistical data for many years without the actual daily observation data, and can also carry out the interpolation of incomplete observation data. The meteorological data are from the surrounding meteorological stations.

2020-03-11

Landscape types of the Heihe River Basin (2000)

"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The land cover map of Heihe River Basin is one of the land surface layers in the atlas, with a scale of 1:2500000, positive axis and equal volume conic projection, and standard latitude of 25 47 n. Data source: land cover data of Heihe River Basin in 2000, road data of Heihe River Basin in 2010, administrative boundary data of one million Heihe River Basin in 2008, residential area data of Heihe River Basin in 2009 and 100000 river data of 2009.

2020-03-05

Desert and glaciers of the Heihe River Basin

"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The desert (sand land) and glacier map of Heihe River Basin is one of the land surface part of the atlas, with scale of 1:2500000, positive axis isometric conic projection and standard latitude of 25 47 n. Data source: Glacier distribution data of Heihe River Basin Based on the first glacial catalogue, desert (sand) distribution data of 1:100000 Heihe River Basin, road data of 2010 Heihe River Basin, administrative boundary data of 1 million Heihe River Basin in 2008, residential area data of 2009 Heihe River Basin, and 100000 river flow data in 2009.

2020-03-05

Landuse/landcover data of the Heihe River Basin in 2000

The Landuse/Landcover data of the Heihe River Basin in 2000 ( newly compiled in 2012), was finished by the Remote Sensing Laboratory of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, using satellite remote sensing, based on the LandsaTM and ETM remote sensing data around 2000, combing field investigation and verification, thus leading to the establishment of the Heihe River Basin 1:10. 10,000 land use/land cover imagery and vector database. The main contents are: 1:100,000 land use graphic data and attribute data in the Heihe River Basin. The Heihe River Basin 1:100,000 (2011) land cover data and the previous land cover data use the same layered land cover classification system, the whole basin is divided into six first-class categories (cultivated land, woodland, grassland, waters, urban and rural residents, industrial and mining land and unused land), 25 secondary classes; data types are vector polygons, stored as Shape format. Land cover classification attributes: Primary type, secondary type, attribute coding, spatial distribution position Cultivated land: Plain dry land, 123, is mainly distributed in basin, Piedmont zone, river alluvial, diluvial plain or lacustrine plain (lack of water, irrigation condition is poor). Hilly dry land, 122, is mainly distributed in Hilly areas. Generally speaking, land blocks distribute on gentle slopes, ridges and mats of hills. Mountainous dry land, 121, is mainly distributed in mountainous areas, with the elevation below 4000 meters (gentle slope, mountainside, steep slope platform, etc.) and the Piedmont zones. Woodland: There is woodland (arbor), 21, is mainly distributed in the mountains (below 4000 meters ) or on the slopes of the mountains, valleys, hills, plains and so on. Shrub land, 22, is mainly distributed in higher mountain areas (below 4500 meters), most of which distribute in hillsides, valleys and sandy land. Sparse forest land, 23, is mainly distributed in the mountains, hills, plains and sandy land, and on the edge of the Gobi (loam, gravel). Other woodlands, 24, are mainly distributed in the oasis field, around rivers, roadsides and rural settlements. Grassland: Highly covered grassland, 31, is mainly distributed in mountainous areas (slow slopes), hills (steep slopes) and inter-river beaches, Gobi, sand dunes, etc.  Mid-covered grassland, 32, is mainly distributed in relatively dry areas (Gobi, low-lying land and sandy land,sand dunes, etc.). The low-cover grassland, 33, grows mainly in drier areas (on the loess hills and on the edge of the sand). Waters: Channel, 41 is mainly distributed in plains, inter-river cultivated land and inter-mountain valleys. Lake, 42, is mainly distributed in low-lying areas. Reservoir pit, 43, is mainly distributed in plains and valleys between rivers, surrounded by residential areas and cultivated land. Glacier and permanent snow cover, 44, mainly distribute at the top of (over 4000) alpine regions. Flood land, 46, is mainly distributed in the high and low hillside gullies, the piedmont, the plain lowlands, and the edge of the river and lake basins. Residents land: Urban land, 51, is mainly distributed in plains, mountain basins, slopes and valleys. Rural residential land, 52, are mainly distributed in oases, cultivated land and roadsides, on the tablelands and the slopes. Industrial land and traffic land, 53, are generally distributed in the periphery of towns, areas with fairly developed transportation and industrial mining areas. Unutilized land: Sandy land, 61, is mostly distributed in the basin, on both sides of the river, in the river bay and on the periphery of the Piedmont and Gobi. Gobi, 62, is mainly distributed in the Piedmont belt with strong wind erosion and sediment transport. Saline and alkaline land, 63, is mainly distributed in dry lakes, lakeside and areas relatively low with easy water accumulation. Swamp, 64, is mainly distributed in relatively low areas with easy water accumulation. Bare soil, 65, is mainly distributed in arid areas (steep hillsides, hills and gobi), with vegetation coverage less than 5%. Bare rock, 66, is mainly distributed in extremely arid rocky mountainous areas (windy and rainless). The other, 67 mainly distributes in bare rocks formed by freezing and thawing above 4000 meters, also known as alpine tundra.

2019-09-15