该数据集是从中国科学院青藏高原研究所开发的一套中国区域近地面气象与环境要素再分析数据集中提取得到。该数据集是以国际上现有的 Princeton 再分析资料、GLDAS 资料、GEWEX-SRB 辐射资料,以及 TRMM 降水资料为背景场,融合了中国气象局常规气象观测数据制作而成。其时间分辨率为 3 小时,水平空间分辨率 0.1°,包含近地面气温、近地面气压、近地面空气比湿、近地面全风速、地面向下短波辐射、地面向下长波辐射、地面降水率,共 7 个要素(变量)。
王旭峰
该数据集是MODIS的植被指数数据(MOD13Q1),将三江源区域进行了提取,以便单独开展三江源地区的研究分析。MOD13Q1是16天合成的植被指数,包含归一化植被指数(NDVI)和增强型植被指数(EVI)。三江源的空间范围覆盖两景MODIS文件(h25v05和h26v05)。数据存储格式为hdf,每个文件中包含12个波段:归一化植被指数(NDVI)、增强型植被指数(EVI)、数据质量(VI Quality)、红波段反射率(red reflectance)、近红外波段反射率(NIR reflectance)、蓝波段反射率(blue reflectance)、中红外波段反射率(MIR reflectance)、观测天顶角(view zenith angle)、太阳天顶角(sun zenith angle)、相对方位角(relative azimuth angle)、合成的时间(composite day of the year)和象元可靠性(pixel reliability). 本数据集数据格式为hdf,空间分辨率250m,时间分辨率是16天,时间范围:2000年2月至2021年10月。
王旭峰
基于MODIS 2000年至2020年生长季平均的NDVI与EVI(空间分辨率250m),利用Mann-Kendall趋势检测方法,计算了NDVI的变化趋势。MOD13Q1 V6产品提供逐像元的植被指数。一个是归一化差值植被指数(NDVI),又称连续性指数,是由现有的国家海洋和大气管理局高级甚高分辨率辐射计(NOAA-AVHRR)导出的NDVI。第二个植被层是增强植被指数(EVI),该指数将冠层背景变化最小化,并在浓密的植被条件下保持敏感性。EVI还使用蓝色波段去除烟雾和亚像素薄云造成的残留大气污染。MODIS NDVI和EVI产品是由大气校正的双向地表反射率计算而来的。该数据空间分辨率为250m。
王旭峰
青藏高原分区域动力降尺度(TPSDD)数据集是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-空气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。该数据集的时间跨度为1981年至2020年,时间分辨率为2小时,空间分辨率为10公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、动量通量、显热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 邹捍, 李鹏, 周立波
青藏高原分区域动力降尺度数据集-标准年(TPSDD-Standard)是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-大气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。根据青藏高原上空500 hPa多年平均位势高度场,选取与该位势高度场空间相关系数最大的年份(2014年)作为标准年,它能粗略反映青藏高原大气多年平均状况。该数据时间分辨率为1小时,空间分辨率为5公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、感热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 周立波, 李鹏, 邹捍
冰川表面运动提取在冰川动力学与物质平衡变化研究中具有重要意义,针对当前我国自主遥感卫星数据在冰川运动监测应用中存在的不足,选用GF-3卫星FSI模式下获取的2019—2020年间覆盖青藏高原高山区典型冰川的SAR数据,借助并行化偏移量跟踪算法获取了研究区冰川表面流速分布。GF-3影像凭借其良好的空间分辨率,在规模较小、运动缓慢的冰川运动提取方面具有显著的优势,能够更好地体现冰川运动细节信息及其差异性。该研究有助于分析气候变化背景下青藏高原地区冰川的运动规律及其时空演变特征。
闫世勇
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上。采用了CMIP6提供的13个模型4种情景输出的降水与气温数据,对未来降水与气温数据进行后处理,后处理后的降水与气温驱动水文模型,模拟出2046-2065年水循环过程,给出全青藏高原空间0.1度日尺度径流未来可能时空分布。
叶爱中
基于CMIP6模式资料(模式列表见表1)估算了历史时期(1990-2014年)和未来(2046-2065年)不同气候变化情景下(包括SSP126, SSP245, SSP585),青藏高原和环北极地区冻土分布、冻土活动层厚度,以及冻土区陆地生态系统碳通量(总初级生产力GPP和生态系统碳源汇NEP)数据,空间分辨率为1°×1°。其中冻土分布利用空间约束方法 (Chadburn et al., 2017),基于现阶段不同温度梯度下冻土出现的概率,结合地球系统模式模拟的未来温度变化,估算未来气候变暖情景下的冻土分布。活动层厚度变化方面,利用现阶段基于遥感估算的活动层厚度对温度变化的敏感性约束地球系统模式模拟的活动层厚度变化,从而校正模型对冻土活动层厚度模拟的误差。未来冻土区碳通量为地球系统模式模拟结果的多模式集合平均值。 模拟结果表明,未来气候变化情景下青藏高原冻土将显著退化,随着未来温度升高,连续多年冻土区表现为碳源,但升温促进植被生长,在非连续冻土区碳汇能力增强。与青藏高原类似,未来环北极地区冻土也将普遍退化,未来气候变暖促进北极地区植被增长,从而增强区域碳汇。
汪涛, 刘丹, 魏建军
青藏高原气溶胶光学特性地基观测数据集采用Cimel 318太阳光度计连续观测获得,涉及珠峰站和纳木错站共两个站点。这些产品是经过云检测之后的结果。数据覆盖时间从2021年1月1日到2021年12月31日,时间分辨率为逐日。太阳光度计在可见光至近红外设有8个观测通道,中心波长分别为:340、380、440、500、670、870、940和1120 nm。仪器的视场角为1.2°,太阳跟踪精度为0.1°。根据太阳直接辐射可获得6个波段的气溶胶光学厚度,精度估计为0.01-0.02。最终采用AERONET统一反演算法,获得气溶胶光学厚度、Ångström指数、粒度谱、单次散射反照率、相函数、复折射指数和不对称因子等。
丛志远
该物候数据基于青藏高原2000-2015年MOD13A2数据(时间分辨率为16天,空间分辨率为1km),利用TIMESAT软件中分段高斯函数拟合NDVI曲线,采用动态阈值方法提取春季物候、秋季物候以及生长季长度,其中春季物候和秋季物候的阈值分别设置为0.2和0.7。此物候数据进行了掩膜处理。其中,掩膜规则为:1)必须满足NDVI的最大值出现在6-9月份之间;2)6-9月份NDVI均值不能小于0.2;3)冬季的NDVI均值不能超过0.3。
俎佳星, 张扬建
植被调查数据是研究生态系统结构与功能必不可少的数据。青藏高原地区蕴含广袤的草地生态系统,主要包括高寒草甸、高寒草地、以及高寒荒漠化的草地。由于独特的地理位置以及高海拔缺氧的环境条件,在藏北高原的群落调查数据较为稀少。本数据集包括2019年藏北样带上47个采样点的的地上生物量和盖度数据,采样时间为7-8月。样方大小为50cm×50cm,烘干后称取植物干重。本数据集可用于生产力的空间分析与模型的校准工作。
张扬建, 朱军涛
三极气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。气溶胶类型数据融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终的三极地区气溶胶类型数据(共12种)和质量控制结果。该数据产品充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。
赵传峰
2000-2020年三极地区0.1º气溶胶光学厚度数据集(也称为“Poles AOD Collection 1.0”气溶胶光学厚度(AOD)数据集),结合Merra-2模式数据与MODIS卫星传感器AOD制作,数据覆盖时间从2000年到2020年,时间分辨率为逐日,覆盖范围为“三极”(南极、北极和青藏高原)地区,空间分辨率为0.1度。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁
基于12套过去千年温度资料(包括2套青藏高原夏季温度格点重建数据集、2条北极温度重建序列、1套北极格点温度重建序列、6套全球温度格点重建数据集,以及1套过去千年全球再分析数据集),利用最优信号提取法重建了过去千年(900–1999 CE)青藏高原和北极夏季年分辨率气温变化序列。青藏高原的选取范围是(27°N–36°N, 77°E–106°E),北极的选取范围是(60°N–90°N)。重建目标是仪器观测数据CRUTEM4v数据集6月至8月夏季平均气温基于1961–1990 CE时段的异常值。数据可用于研究过去千年青藏高原和北极的温度变化规律及机理。
史锋
本数据集包括1995,2000,2005,2010和2015年等5期湖泊透明度数据。数据源为:Landsat 5,Landsat 7和Landsat 8。使用方法:利于实测光谱反射率,在分析光谱反射率与同步测量的透明度之间的关系的基础上,采用半经验方法选择最佳波段组合,建立青藏高原湖泊透明度算法,获得水体透明度。通过实测点的验证表明水体的透明度估算相对误差在35%。
宋开山
本数据包括青藏高原纳木错地区土壤细菌分布数据,可用来探索围栏和放牧对纳木错地区土壤微生物的季节性影响,样品采集时间为2015年5月至9月,土壤样品用冰袋保存,运回北京青藏高原研究所生态实验室;本数据为扩增子测序结果,使用MoBio Powersoil™DNA分离试剂盒提取土壤DNA,引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3')和806R (5'GGACTACNVGGGTWTCTAAT-3'),扩增后的片段通过Illumina Miseq PE250方式测序。原始数据通过Qiime软件进行分析,之后计算序列之间相似度,并在相似度在97%以上的序列聚类为一个OTU。采用Greengenes参考文库进行序列比对,去除了只在数据库中出现一次的序列。土壤含水率和土壤温度由土壤温湿度计测得,土壤pH值用pH计测定(Sartorius PB-10, Germany),用2 M KCl(土壤/溶液,1:5)提取土壤硝态氮(NO3−)和铵态氮(NH4+)浓度,并用Smartchem200离散自动分析仪进行分析。本数据集对研究干旱半干旱草原土壤微生物多样性具有重大意义。
孔维栋
青藏高原草地土壤细菌多样性数据。样品采集时间为2017年7月至8月,包含高寒草甸,典型草原,荒漠草原3种生态系统共计120个样品。土壤表层样品采集后用冰袋保存,运回北京青藏高原研究所生态实验室,通过MO BIO PowerSoil DNA试剂盒提取土壤DNA,16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R (5´GGACTACNVGGGTWTCTAAT-3´),扩增后的片段通过Illumina Miseq PE250方式测序。原始数据通过Qiime软件分析,序列分类依据Silva128数据库,将相似度在97%以上的序列聚类为一个操作分类单元(OTU)。本数据系统地比较了青藏高原样带草地土壤微生物的细菌多样性,对研究微生物在青藏高原的分布具有重大意义。
孔维栋
数据内容:该数据集是青藏高原重点河湖研究区的国产高分系列(GF1/2/3/4)2015-2020年历史存档卫星数据,可覆盖典型河湖区进行有效监测,数据的时间范围为2015-2020年。数据来源和加工方法:数据为1级产品,经过均衡化辐射校正,通过不同检测器的均衡功能对影响传感器的变化进行校正,部分数据基于同时期的Landsat8影像为底图,选取控制点,进行图像几何校正,之后基于DEM数据进行正射校正,并对相应的数据进行波段融合处理。数据质量描述:高分系列卫星由中国资源卫星应用中心负责处理,有中科院空天院卫星地面接收站接收的原始数据和经过加工处理形成的各级产品。其中,1A级(预处理级辐射校正影像产品):经数据解析、均一化辐射校正、去噪、MTFC、CCD拼接、波段配准等处理的影像数据;并提供卫星直传姿轨数据生产的RPC文件。具体参考中国资源卫星应用中心数据网站文件。数据应用成果及前景:数据为国产高分数据,分辨率高,可应用于监测青藏高原作为亚洲水塔的变化以及产生的影像,检验区内其他数据的准确性。
邱玉宝
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型(DTVGM: Distributed Time—Variant Gain Hydrological Model)进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上,实际蒸发模拟同气象局公开的站点观测基本一致。模型模拟出1998-2017年水循环过程,经过验证之后,给出全青藏高原空间0.01度日尺度实际蒸发(包含土壤蒸发和植物蒸腾)时空分布。
叶爱中
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型(DTVGM: distributed time-variant gain model)进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上。模型模拟出1998-2017年水循环过程,给出全青藏高原空间0.01度日尺度径流时空分布。
叶爱中
《2015年第三极部分湖泊水体细菌后处理产品和常规水质参数》数据集收集了2015年期间青藏高原地区部分湖泊水体采样细菌分析结果和常规水质参数。通过整理归纳汇总得到2015年第三极部分湖泊水体细菌后处理产品,数据格式为excel,方便用户查看。样品由计慕侃老师采集于2015年7月1日至7月15日,包含28个湖泊(巴木错,白马纳木错,班戈错(盐湖), 班公错,崩错,别若则错,错鄂(申扎),错鄂(那曲),达瓦错,当穹错,当惹雍错,洞错,鄂雅错,公珠错,果根错,甲热布错,玛旁雍错,纳木错,聂尔错(盐湖),诺尔玛错,朋彦错(盐湖),蓬错,枪勇错,色林错,吴如错,物玛错,扎日南木错,扎西错),共计138个样品。其中湖泊水体细菌DNA提取方法如下:湖水过滤到0.45膜上,然后通过MO BIO PowerSoil DNA试剂盒提取DNA。16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3')。测序方式为Illumina MiSeq PE250,原始数据通过Mothur软件分析,包括quality filtering, chimera removal,序列分类依据Silva109数据库,古菌、真核和未知来源序列已被移除。OTU以97%相似度分类,然后移除仅在数据库中出现一次的序列。常规水质检测参数包括:溶解氧、电导率、溶解性总固体、盐度、氧化还原电位、不挥发有机碳、总氮等。其中,溶解氧采用电极极谱法;电导率采用电导率仪;盐度采用盐度计;溶解性总固体采用TDS测试仪;氧化还原电位采用ORP在线分析仪;不挥发有机碳采用TOC分析仪;总氮采用分光光度法分别得到水质参数结果供参考。
叶爱中
典型年三极冰雪微生物后处理产品收集了2010-2018年期间南北极以及青藏高原地区冰川、冰川雪和冰里采样细菌分析结果。通过整理归纳汇总得到三极区域土壤微生物后处理数据产品,数据格式为excel,方便用户查看。其中南北极和青藏高原地区冰川雪和冰里原核为刘勇勤老师实验组在2010-2018年间从NCBI数据库收集的细菌16S核糖体RNA基因序列。收集的序列通过使用DOTOUR软件计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过“Classifier”软件与RDP数据库进行比对,在可靠性大于80%的情况下鉴定到属一级水平;青藏高原冰川采集时间为2010-2018年间,包含刘勇勤老师实验组分离的青藏高原7条冰川(珠峰东绒布冰川,天山一号冰川,古里雅冰川,老虎沟冰川,木孜塔格冰川,七一冰川和玉珠峰冰川),向述荣老师分离的马兰冰川和张新芳老师分离的若岗日冰川的细菌16S核糖体RNA基因序列。冰川样品采集后带回北京青藏高原院研究所生态实验室和兰州冰冻圈国家实验室,涂布平板后于不同温度下(4-25摄氏度)培养20天-90天并挑取单菌落纯化。分离的细菌提取DNA后以27F/1492R引物扩增16S核糖体RNA基因片段,并使用Sanger法测序。16S核糖体RNA基因序列通过“Classifier”软件与RDP数据库进行比对,在可靠性大于80%的情况下鉴定到属一级水平。
叶爱中
典型年三极土壤微生物后处理产品收集了2005-2006年期间南北极地区土壤采样细菌分布分析结果和2015年期间青藏高原地区土壤采样细菌分布分析结果。通过整理归纳汇总得到三极区域土壤微生物后处理数据产品,数据格式为excel,方便用户查看。其中南北极地区样品采集时间为2005年12月13日至2006年12月8日,包含北极3个地区52个样品(Spitsbergen Slijeringa,Spitsbergen Vestpynten,及Alexandra Fjord Highlands),南极5个地区171个样品(Mitchell Peninsula,Casey station main power house, Robinsons Ridge,Herring Island,Browning Peninsula);青藏高原采集时间为2015年7月1日至7月15日,包含草甸,草原,荒漠3种生态系统,共计18个采样点位,每个采样点位样品个数为3-5个。采样点降水、气温和干旱度由气象信息估算得到,供读者参考。土壤表层样品采集后用液氮保存,运回悉尼实验室,通过FastPrep DNA试剂盒提取。提取后的DNA样品使用27F(5'-GAGTTTGATCNTGGCTCA-3')和 519R (5'-GTNTTACNGCGGCKGCTG-3')扩增16S rRNA基因片段。扩增后的片段通过454方式测序,原始数据通过Mothur软件分析。首先去除测序质量不佳序列,之后进行排序并去除嵌合体序列。之后计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过与Silva数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。
叶爱中
玛曲草地观测点始建于 2005 年,海拔 3434 米,位于距离玛曲县城以南约 18公里的河曲马场(102°08′45″E,33°51′50″N),下垫面为典型的发育良好的高寒草原,属于季节性冻土区。本数据集为2017-2020年黄河源区玛曲草地观测站点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
采用WRF4.1.1模式制备的青藏高原高分辨率大气-水文模拟数据集,格点数为191*355,空间分辨率9km,覆盖范围如图1所示,时间分辨率为3h,模拟时采用的主要参数化方案包括:Thompson微物理方案、RRTM长波辐射方案、Dudhia短波辐射方案、MYJ边界层方案、Noah陆面过程方案。数据的时间跨度为2000-2010年,变量包括:降水(Rain),地面2m高度的温度(T2)和湿度(Q2),地表温度(TSK)、地面气压(PSFC)、地面上10m风场的纬向分量(U10)、地面上10m风场的经向分量(V10)。地表向下的长波通量(GLW)、地表向下短波通量(SWDOWN)、地表热通量(GRDFLX)、感热通量(HFX)、潜热通量(LH)、地表径流(SFROFF)、地下径流(UDROFF)等。该数据可有效支撑青藏高原地区区域气候特征及气候变化研究。
孟宪红, 马媛媛
鄂陵湖是青藏高原最大的淡水湖泊,与邻近的扎陵湖一起构成了黄河源头的“姊妹湖”,并入选了国际重要湿地名录,也是三江源国家公园的核心区。本数据集为中国科学院若尔盖高原湿地生态系统研究站2017-2020年黄河源区鄂陵湖草地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度(2020年为比湿)、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
植被指数(NDVI, Normalized Difference Vegetation Index)可以准确反映地表植被覆盖状况。目前,基于SPOT/VEGETATION以及MODIS等卫星遥感影像得到的NDVI时序数据已经在各尺度区域的植被动态变化监测、土地利用/覆被变化检测、宏观植被覆盖分类和净初级生产力估算等研究中得到了广泛的应用。EVI类似于归一化差异植被指数(NDVI),可用于量化植被绿度。然而,EVI对一些大气条件和树冠背景噪声进行了校正,并且在植被茂密的地区更为敏感。它包含一个“L”值来调整树冠背景,“C”值作为大气阻力系数,以及来自蓝色波段(B)的值。这些增强功能允许将指数计算R和NIR值之间的比率,同时在大多数情况下降低背景噪声、大气噪声和饱和度。本研究工作主要是对NDVI和EVI数据进行后处理,通过转换投影坐标系、数据融合、最大值合成法、剔除异常值和剪裁后给出较为可靠的2013年和2018年的青藏高原的植被情况。
叶爱中
植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。本研究工作主要是对两套GLASS FVC数据进行后处理,通过数据融合、剔除异常值和剪裁后给出较为可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被覆盖度情况。
叶爱中
NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关。是反映农作物长势和营养信息的重要参数之一。根据该参数,可以知道不同季节的农作物对氮的需求量, 对合理施用氮肥具有重要的指导作用。植被修正指数Correct NDVI (C-NDVI) 是剔除气候要素(气温、降水等)对NDVI的影响后的NDVI的值。以降水为例,降水对植被生长影响的滞后效应的研究表明,不同地区由于植被组成和土壤类型的差异,降水影响的滞后时间不同。本研究工作主要是对MODIS NDVI数据进行后处理,首先将当月NDVI值与本月的降水量、本月与上月的降水量的平均值、本月与上两个月的降水量的平均值等分别进行相关分析,确定最优的滞后时间。将NDVI与降水和气温做回归分析,得到相关的系数,然后通过MODIS NDVI与气候因子回归的NDVI的差值计算出校正的NDVI值。我们利用气候数据对NDVI进行修正后给出可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被修正指数。数据空间分辨率为0.5度,时间分辨率为月度值。
叶爱中
三极多年冻土活动层厚度融合了两套数据产品,主要参考数据为通过GCM模型模拟生成的1990-2015年活动层厚度逐年值。本数据集的数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。参考校正数据集为利用统计和机器学习(ML)方法模拟得到2000-2015年的活动层厚度平均值,数据格式为GeoTIFF格式,空间分辨率为0.1°,数据单位为m。本研究工作通过对两套数据进行数据格式转换、空间插值、数据校正等后处理操作,生成了NetCDF4格式的多年冻土活动层厚度数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为1990-2015年,数据单位为cm。
叶爱中
三极多年冻土区碳通量原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据包括青藏高原多年冻土区NPP和GPP等表征碳通量的参数,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土区NPP和GPP数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,数据单位为gc/m2yr。
叶爱中
三极多年冻土活动层厚度原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据内容是青藏高原冻土区活动层厚,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土区活动层厚度,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,单位为cm。
叶爱中
青藏高原被誉为“亚洲水塔”,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。准确估算青藏高原的径流,揭示径流的变化规律,有利于高原及周边地区的水资源管理和灾害风险规避。青藏高原五大河源区冰川径流分割数据集覆盖时间从1971年到2015年,时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为流域,以多源遥感和实测数据为基础使用耦合了冰川模块的分布式水文模型VIC-CAS模拟获得,使用站点实测数据对模拟结果进行了验证,其所有数据进行了质量控制。
王世金
青藏高原被誉为“亚洲水塔”,是东南亚众多河流的源区,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。青藏高原五大河源区冰川径流数据集覆盖时间从2005年到2010年,时间分辨率为每5年一期,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为1km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态经济学方法结合,量化了江河源区冰冻圈水资源服务的价值,其所有数据进行了质量控制。
王世金
土壤冻结深度(SFD)是评估冻土区水资源平衡、地表能量交换和生物地球化学循环变化所必需的,是冰冻圈气候变化的重要指标,对季节性冻土和多年冻土都至关重要。 本数据是基于Stefan方程,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP26、RCP45、RCP60和RCP85)、HadGEM2-ES(RCP26、RCP45和RCP85)、IPSL-CM5A-LR(RCP26、RCP45、RCP60和RCP85)、MIROC5(RCP26、RCP45、RCP60和RCP85)和NorESM1-M(RCP26、RCP45、RCP60和RCP85)等多模型不同情景下,利用逐日气温的预测数据及E-factor数据,获得2007-2065年空间分辨率为0.25度,青藏高原区域年平均土壤冻结深度数据集。
潘小多, 李虎
“亚洲水塔”青藏高原(TP)的降水在区域水和能源循环中发挥着关键作用,对下游国家的水资源供应有重要影响。气象站点所获取的降水信息通常被认为是最准确的,但在地形复杂、环境恶劣的青藏高原中,气象站数据却十分有限。卫星和再分析降水产品可以为地面测量提供补充信息,特别是在大面积测量不足的区域。在这里,我们通过使用人工神经网络 (ANN) 和环境变量(包括海拔、地表压力和风速)确定各种数据源的权重来最优地融合站点、卫星和再分析数据。在 1998-2017 年期间,以每日时间尺度和 0.1° 的空间分辨率生成了一个多源降水 (MSP) 数据集横跨青藏高原。与其他四颗卫星产品相比,MSP与标准观测的日降水相关系数(CC)最高(0.74),均方根误差第二低,表明MSP的质量和数据合并的有效性方法。我们使用分布式水文模型进一步评估了青藏高原长江和黄河源头测量不佳的不同降水产品的水文效用。在 2004-2014 年期间,MSP 实现了每日流量模拟的最佳 Nash-Sutcliffe 效率系数(超过 0.8)和 CC(超过 0.9)。此外,基于多重搭配评估,MSP 在未测量的西部 TP 上表现最好。该合并方法可应用于全球其他数据稀缺地区,为水文研究提供高质量的降水数据。整个 TP 的左下角的经纬度、行数和列数以及网格单元信息都包含在每个 ASCII 文件中。
洪仲坤, 龙笛
针对青藏高原泛三江并流区的17.9万km2的区域,通过Sentinel-1升降轨,以及Palsar-1升轨三种SAR数据进行InSAR变形观测,根据获取的InSAR变形图像,结合地貌和光学影像特征进行综合解译。共识别得到海拔4000m以下的活动性滑坡949处。需要注意的是,因不同SAR数据的观测角度、敏感度和观测时相的差异,同一滑坡用不同数据解译存在一定的差异,在滑坡的范围、边界方面需要借助地面和光学影像进行修正。滑坡InSAR识别比例尺的概念与传统空间分辨率不同,主要依靠变形强度,因此一些规模较小,但与背景相比变形特征突出,整体性强,与地物具有逻辑空间关系的滑坡也能得以解译(配合SAR的强度图、地形阴影图、光学遥感影像为地物参照)。本次最小解译区域可达几个像素,如参考怒江沿江公路解译了一处只有4个像素的公路边坡滑坡。
姚鑫
本数据是研究团队综合利用Sentinel-1 SAR数据,AMSR-2微波辐射计数据以及MODIS LST产品所生产的青藏工程走廊区域高分辨土壤冻融数据集。基于新提出的算法,本产品提供月尺度100m空间分辨土壤冻融状态检测结果,并通过气象站点和土壤温度站点进行精度验证。基于青藏工程走廊地区的4个气象站点进行精度验证,结果表明基于升轨和降轨Sentinel-1的土壤冻融检测结果的整体准确率分别为84.63%和77.09%。基于那曲土壤湿度/温度监测站点进行精度验证,升轨和降轨结果的平均整体精度为78.58%和76.66。该产品弥补了传统土壤冻融产品空间分辨率不足(>1km)的问题,为青藏工程走廊区域高分辨率土壤冻融监测提供了可能。
周欣, 刘修国, 周俊雄, 张正加, 陈启浩, 解清华
基于长时间序列MODIS积雪产品,采用隐马尔可夫随机场(Hidden Markov Random Field, HMRF)建模框架,制备了青藏高原2002-2021年空间分辨率为500 m的逐日无云积雪数据集。该建模框架将MODIS积雪产品的光谱信息、时空背景信息,以及环境相关信息以最优形式进行整合,不仅填补了云层遮挡引起的数据空缺,而且提高了原始MODIS积雪产品的精度。特别地,本数据集在环境背景信息中引入了太阳辐射能量对积雪分布的影响,有效改进了地形复杂山区的积雪识别精度。通过与实测雪深、Landsat-8 OLI识别的积雪分布对比分析,本数据集精度依次为98.31%和92.44%,并且在积雪转化期、海拔较高、太阳辐射较多的阳坡提升效果显著。本数据集改善了原始MODIS积雪产品时空不连续和在地形复杂山区精度较低的问题,能为青藏高原气候变化研究和水资源管理提供重要的数据基础。
黄艳, 许嘉慧
1978-2016青藏高原湖冰物候数据集包含青藏高原132个湖泊(面积大于40平方公里)1978-2016年的湖冰物候(开始结冰日、完全结冰日、开始融化日、完全融化、冰期、完全结冰期)。数据集利用模型和遥感结合的方式获取物候信息,首先基于MOD11A2提取的全湖平均湖面温度率定改进的湖泊半物理模型(air2water)生成日尺度长时序湖面温度序列,再利用MOD10A1雪覆盖产品获取湖冰物候提取的温度阈值。与现有研究结果和数据集对比,相关性(R方)高于0.75。该数据集结合遥感技术和数值模型的优势,为大时空尺度上分析青藏高原湖泊水-气交换、水热平衡及湖泊中生物化学过程对气候变化的响应提供支撑。
郭立男, 吴艳红, Zheng Hongxing, 张兵, 迟皓婧, 范兰馨
本数据库包括青藏高原坡度、坡向及数字高程模型数据(DEM)。数据来源于地理空间数据云网站下载的分辨率为30m*30m的数值高程模型数据,利用Arcgis软件的表面分析功能,提取出了青藏高原的坡度和坡向信息。该数据经多人复查审核,其数据完整性、位置精度、属性精度均符合标准,质量优良可靠。该数据作为工程地质条件之一,是进行青藏高原重大工程扰动灾害、重大自然灾害的发育规律研究及易发性、危险性及风险分析的基础数据。
祁生文
流域内的水量平衡可以通过单个湖泊的水位波动体现,而区域湖泊水位的一致性波动则可以反映区域有效水分的变化。以往的研究主要通过分析湖泊沉积物的多代用指标来重建过去的有效水分,缺少对区域有效水分变化的定量研究。青藏高原及东中亚地区典型湖泊区域全新世有效水分连续模拟结果数据集是基于湖泊能量平衡模型、湖泊水量平衡模型及瞬态气候演变模型,以构建的虚拟湖泊为载体,连续且定量地展示了青藏高原青海湖、沉错、班公错等以及东中亚地区青土湖、呼伦湖、岱海等湖泊区域全新世有效水分变化。模拟结果为探究千年尺度上湖泊演化过程提供了新的视角。
李育
该数据为2020年西藏26个湖泊70个点位浮游植物数据,采样时间为8-9月,采样方式为常规浮游植物采样方式,样品采集1.5升,后经鲁哥氏液固定,静止沉淀后虹吸浓缩后,利用倒置显微镜镜检结果。数据包括硅藻、绿藻、蓝藻、甲藻、裸藻、隐藻、棕鞭藻、黄藻、褐藻和轮藻等10个门类,共计77种/属不同浮游植物的密度数据。该数据为原始数据,未经过处理,单位为个/L。该数据可以用于表征这些湖泊敞水区浮游植物的组成、丰度,也可用于计算这些湖泊中浮游植物群落的多样性。
张民
冰川物质平衡是表征冰川积累和消融量值的重要冰川学参数之一。冰川物质平衡是联系气候和冰川变化的纽带,是冰川对所在地区气候状况的直接反映。气候变化导致冰川的物质收支状况发生相应的变化,而这种物质上的收支变化又可以引起冰川运动特征及冰川热状况的改变,进而导致冰川末端位置、面积和冰储量的变化。监测方法即在冰川表面设置固定标志花杆,定期监测冰川表面相对于花杆顶点的距离,以计算冰雪消融量;在积累区定时定点开挖雪坑或钻孔取样,测量雪层密度,分析雪-粒雪-附加冰层位特征,计算雪层积累量;再将单点监测结果绘到大比例尺冰川地形图上,按净平衡等值线法或等高线分区法计算整条冰川的瞬时、季节(如冬季和夏季)及年度的物质平衡分量。该数据集为青藏高原及天山地区不同代表性冰川年物质平衡数据,单位为毫米水当量。
邬光剑
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
湖泊汇集上游流域的径流及其携带的泥沙和营养物质,是流域中物质迁移的重要“归宿”,因此湖泊水体和沉积物属性在很大程度上受湖泊流域的属性(如湖泊上游的气候、地形和植被条件)影响。本数据集根据数字高程模型提取青藏高原上1525个湖泊(面积从0.2到4503平方公里)的流域范围,计算了湖泊水体、地形、气候、植被、土壤/地质和人类活动等6方面的721个属性,是首套青藏高原湖泊流域属性数据集,可为青藏高原湖泊(特别是缺资料湖泊)研究提供基础数据。
刘军志
本数据为青藏高原1:25万重大工程扰动灾害数据。对于灾害解译范围,线路工程(国道、高速、铁路、电网工程)及水电工程,以工程两侧第一分水岭为界;矿山、油田和口岸工程,以距离工程1km为界。工程扰动灾害划分为两类:①由工程建设诱发的滑坡、崩塌、泥石流灾害;②可能影响工程的自然灾害,规定上述解译范围内的所有自然灾害均属于第②类工程扰动灾害。其数据包含滑坡的位置、长、宽、高差、分布高程、成因类型、诱发因素、发生时间、岩性等要素及灾害相关工程及工程建设年份等。依据Google earth影像及1:50万地质图解译全区工程扰动灾害,共解译了6176个灾害点;主要利用Google earth进行扰动灾害解译,同时结合野外考察验证解译结果,利用ArcGIS生成灾害分布图件;数据来源于Google earth高分辨率影像,原始数据精度高,在灾害文件生成过程中严格按照解译规范,并有专人审查,数据质量可靠;依据所收集数据可进行研究区灾害风险分析,为已建工程的顺利运行和未建/在建线路工程的建设提供理论指导。
祁生文
本数据集为青藏高原区域2002-2020年日分辨率0.00425° x0.00425°地表反照率产品。基于MODIS反射率数据,采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,反演时空连续的日分辨率的高精度BRDF/反照率。MODIS地表反射率数据(MOD09GA、MYD09GA)集为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日分辨率的反照率,其中,黑空反照率的太阳入射为当地正午时太阳入射。经过验证评估,满足反照率应用精度要求,相较于同类产品在山区站点的验证精度更高,且时空连续性更好。可有效支撑青藏高原地区辐射平衡、环境变化研究。
游冬琴, 唐勇, 韩源
本数据包含国内青藏高原范围内的1:400万精度的断裂数据,属性表字段包括断裂名称、断裂长度、走向、倾向、断层性质、古地震等。该数据来源于地震局,后来通过大量查阅断裂相关的文献,又在原始数据的基础上添加了断裂的活动年代这一属性。原始数据资料精度可靠,并有专人负责质量审查;经多人复查审核,其数据完整性、位置精度、属性精度均符合有关技术规定和标准的要求,质量优良可靠。该断裂数据可为青藏高原区域的一些断裂相关的研究工作提供基础数据支撑。
祁生文
冰川区域内的近地表气温变化和温度预测的可靠性是水文和冰川学研究的重要问题,由于缺乏高海拔观测,这些问题仍然难以捉摸。本研究基于从 6 个不同流域的 12 个自动气象站、43 个温度记录仪和 6 个国家气象站收集的 2019 年气温数据,展示了不同冰川/非冰川地区的气温变化,并评估了不同温度预测的可靠性,以减少消融估计中的误差。结果表明,不同气候背景下温度递减率 (LRs) 的空间异质性很大,最陡峭的 LRs 位于寒冷干燥的青藏高原西北部,最低的 LRs 位于受暖湿季风影响的青藏高原东南部。青藏高原西部和中部高海拔冰川区的近地表气温受下降风的影响较小,因此可以从冰川外的记录中线性预测。相比之下,青藏高原东南部温带冰川上盛行的局地降风风对环境气温的降温作用明显,因此,冰川上气温明显低于同等海拔的非冰川地区。因此,来自低海拔非冰川站的线性温度预测可能导致正度日数高估 40%,特别是对于流线距离长且冷却效果显着的大型冰川。这些发现提供了值得注意的证据,表明在估算青藏高原冰川融化时,应仔细考虑不同气候条件下高海拔冰川的不同 LR 和相关冷却效应。
杨威
在共享社会经济路径(SSP)5-8.5情景下4个CMIP6模式2015-2100年的模拟结果。选取标准为这四个模式水平分辨率均小于1°,且均有日数据。从原始模拟结果中提取了8个代表极端气候的变量,分别是日最高气温的极高值(TXx)、日最低气温的极高值(TNx)、日最高气温的极低值(TXn)、日最低气温的极低值(TNn)、连续干旱日数(CDD)、连续湿润日数(CWD)、降水强度(SDII)和强降水日数(R20mm)。数据时间分辨率为年,空间范围为青藏高原地区,时间范围为2015-2100年。
张冉
该数据集是刘勇勤课题组从2010年以来多次野外采样积累的数据汇总而成,包括青藏高原12个冰川的冰芯和雪坑微生物丰度数据(5409条记录)和38个冰川的溶解性有机碳和总氮数据(2532条记录,包括冰芯、雪坑、表面冰、表面雪和冰前径流等生境)。所采样的冰川覆盖范围广,气候条件多样,多年平均气温从-13.4℃(古里亚冰川)到2.9℃(朱溪沟冰川),多年平均降水量从76.9毫米(15号冰川)到927.8毫米(24K冰川)。这些数据可为研究冰川碳氮循环和全球变暖背景下冰川退缩对下游生态系统的影响提供基础数据。
刘勇勤
1) 青藏高原地面气象驱动数据集(2019-2020),包括地表温度(Land surface temperature)、地表降水率(Mean total precipitation rate)、下行短波辐射(Mean surface downward long-wave radiation flux)以及下行长波辐射(Mean surface downward short-wave radiation flux)4个气象要素。 2) 该数据集以ERA5再分析数据为基础,辅以MODIS NDVI、MODIS DEM、FY3D MWRI DEM数据产品。通过多元线性回归方法对ERA5再分析数据进行降尺度处理,最后通过重采样生成。 3) 青藏高原地面气象驱动数据集(2019-2020)各数据要素均以TIFF格式存储,时间分辨率包括(每日、每月、每年),空间分辨率统一为0.1°×0.1°。 4) 本数据方便不会使用.nc格式的此类同化数据的科研人员和学生使用。在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 杜宝隆
降雨侵蚀力是量化青藏高原土壤侵蚀的重要基础数据之一。高精度的降雨侵蚀力数据是了解目前青藏高原水土流失现状,以及制定水土保持措施的关键,同时可以为青藏高原地质灾害防治提供有力参考。本研究基于青藏高原1-min稠密降水观测数据和高精度格点降水资料,经过订正、重构和检验等步骤,构建了一套新的青藏高原1950~2020年逐年降雨侵蚀力数据集。该数据集是目前青藏高原精度最高、时间序列最长的降雨侵蚀力数据集。
陈悦丽
本数据集为覆盖全球范围考虑积融雪过程的标准化水分距平指数(SZIsnow),该干旱指数数据集由GLDAS-2驱动产生。该指数考虑了与干旱发展相关的诸多水文过程,尤其是积融雪过程。目前许多干旱指数忽略了积融雪过程,导致不能准确地对积雪地区干旱的发生和发展进行评估,该指数很好地弥补了这一不足,解决了干旱物理机制解析与多时间尺度分析无法兼顾,不同类型干旱难以统一评估的两个难题。经验证该指数能够很好地对全球不同地区的历史干旱时间进行定量描述,其优异表现在高纬度和高海拔地区更为突出。因此本数据集可以为干旱的监测评估以及干旱相关研究提供科学参考。
吴普特, 田磊, 张宝庆
最大冻结深度是季节冻土热状态的重要指标,由于全球变暖,季节冻土的最大冻结深度不断下降。发布了中国西北五省、西藏和周边地区1961-2020年每10年的最大冻结深度数据集,空间分辨率为1km。该数据集是采用2001-2010年的最大冻结深度实测数据和空间环境变量构建的支持向量机回归模型,模拟了1961-2020年中国西北、西藏和周边地区的最大冻结深度。验证结果表明:支持向量机回归模型具有良好的空间泛化能力,最大土壤冻结深度的预测值和实测值之间具有较高的一致性,1980s、1990s、2000s和2010s四个时期模拟结果的决定系数分别为0.77、0.83、0.73和0.71。预测结果的百分位区间表明,模拟结果具有良好的稳定性。基于该数据集,发现我国西北地区最大土壤冻结深度不断下降,其中,青海的下降速率最快,平均每十年下降0.53 cm。该数据集为中国西北、高山亚洲和第三极等地区季节冻土的研究提供数据支持。
王冰泉, 冉有华
温湿指数(THI)1973年由奥利弗(J.E.Oliver)提出,其物理意义是湿度订正以后的温度。它考虑了温度以及相对湿度对人体舒适度的综合影响,是衡量区域气候舒适度的一项重要指标。在参考已有关于生理气候评价指标分级标准的基础上,结合青藏高原自然地理特征,面向青藏高原人居环境适宜性评价需求,研制了青藏高原(3000米以上)温湿指数及其适宜性分区结果(包括不适宜、临界适宜、一般适宜、比较适宜与高度适宜)。
封志明, 李鹏, 林裕梅
在国家重点研发计划“冰冻圈和极地环境变化关键参数观测与反演”第一课题“冰冻圈关键参数多尺度观测与数据产品研制“的资助下,中国科学院青藏高原研究所张寅生课题组发展了青藏高原地区降尺度雪深产品。青藏高原积雪深度降尺度数据集来源于积雪概率数据和中国雪深长时间序列数据集的融合结果,采用新发展的亚像元时空分解算法对原始0.25度的积雪深度数据进行时空降尺度,得到0.05度逐日积雪深度产品。通过降尺度前后的雪深产品精度评估的对比,发现降尺度后雪深产品的均方根误差由原产品的2.15 cm减少到了1.54 cm。 青藏高原积雪深度降尺度数据集(2000-2018)的产品信息细节如下。投影为经纬度,空间分辨率0.05 度(约5公里),时间范围为2000年9月1日-2018年9月1日,为Tif格式文件,命名规则为:SD_YYYYDDD.tif,其中YYYY代表年,ddd代表儒略日(001-365)。积雪深度(SD),单位:厘米(cm)。空间分辨率为0.05度。时间分辨率为逐日。
闫大江, 马宁, 张寅生
本数据为降水数据,是热带降水测量任务TRMM(Tropical Rainfall Measuring Mission)逐月降水产品TRMM 3B43,融合青藏高原为主主体的范围区域(25~40°N;73~105°E)内332个气象站点降水数据,该气象站降水数据源自中国气象局国家气象信息中心。本数据集采用站点3°插值优化变分订正方法计算获得的再分析数据集。时间跨度为1998年1月至2018年12月的月样本资料,空间覆盖范围是25~40°N;73~105°E,空间分辨率为1°*1°。
徐祥德, 孙婵
青藏高原土壤温湿度观测网(Tibet-Obs)始建于2008年,包括玛曲、那曲、阿里和狮泉河四个站网,目前已连续运行超过十年,并被NASA的土壤水分主被动卫星SMAP选定为其产品的地面验证点,促进了青藏高原遥感产品和模型模拟的评估和改进。本研究详细梳理了各观测站网的现状及其应用情况,并基于已有观测数据发展了一套长时序(2009-2019)地表土壤湿度(5 cm)观测数据集,主要包含四个站网各站点的15分钟原始观测数据以及玛曲和狮泉河站网的升尺度区域土壤湿度数据。
张佩, 郑东海, 文军, 曾亦键, 王欣, 王作亮, 马耀明, 苏中波
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
数据包括青藏高原与西北干旱区33个湖泊表层沉积物中植物DNA的原始测序文件。我们使用德国Qiagen公司的PowerMax土壤试剂盒提取DNA,并采用通用植物引物g-h (Taberlet et al., 2007) 对样品中叶绿体trnL (UAA) 内含子区的P6环进行PCR扩增,PCR产物随后送至瑞士Fasteris公司进行第二代高通量双端测序,测序仪器为Illumina NextSeq 550。数据质量分数Q30为81.97。
刘兴起, 贾伟瀚
湖泊盐度是湖泊水环境的重要参数,是水资源的重要体现,也是气候变化研究的重要组成部分。本数据基于实测获取的青藏高原湖泊盐度数据,其中盐度以实用盐度单位(psu)进行表征,该盐度值使用电导率传感器测量获得的比电导率(SpC)转换得到。使用Arcgis软件将测量数据转化为空间矢量.shp格式,得到实测盐度空间分布数据文件。该数据可作为地区湖泊环境、水文、水生态、水资源等科学研究的基础数据以及相关研究参考。
朱立平
本数据集提供青藏高原124个湖泊实测水质参数,湖泊总面积为24,570 平方千米,占青藏高原湖泊总面积的53% 。实测湖泊水质参数包括水温、盐度、pH、叶绿素a浓度、蓝绿藻(BGA)浓度、浊度、溶解氧(DO)、荧光溶解有机物(fDOM)和水体透明度(SD)。测量方法中,盐度使用电导率是传感器测量获得的比电导率(SpC)转换得到,叶绿素a和蓝绿藻(BGA)浓度使用总藻类荧光传感器测量,温度使用温度传感器测量,pH使用pH传感器测量,溶解氧(DO)使用光学溶解氧传感器测量,fDOM使用荧光传感器测量,单位是硫酸奎宁单位(QSU),浊度使用浊度传感器测量,以Formazin比浊法为单位(FNU)。上述传感器测量获取的参数均使用YSIEXO或HACH多参数水质仪测量,测量时,传感器位于湖面以下约10-20厘米处。湖泊水体透明度使用塞氏盘测量法进行测量。
朱立平
1)数据内容 包括采样点的观测年份、经纬度、海拔、生态系统类型、不同土层(SOC0-100 (kg Cm-2); 0-100代表土层)、地下生物量含量。 2)数据来源 此部分数据是从文献中获取,具体文献来源参考说明文档。 3)数据质量描述 数据观测覆盖范围广,包含指标全面,展示了不同土层下的土壤有机碳含量,具有较高的完整性和精确性,能满足对青藏高原草地土壤碳储量的估算。 4)数据应用成果及前景 为预测未来青藏高原土壤的碳源–汇效应及实现生态系统碳可持续发展提供基础数据。
胡中民
1)数据内容 包括采样点的观测年份、经纬度、生态系统类型、年降雨量、干旱指数、年净初级生产力、地上生物量、地下生物量等数据。 2)数据来源 一部分来源于文献(1980-1995),另一部分来源于实地采样(2005-2006)。 3)数据质量描述 数据观测年份长,时间跨度大,覆盖范围广,包含指标多,具有较高的完整性和精确性,能满足对青藏高原草地植被碳储量的估算。 4)数据应用成果及前景 为预测未来青藏高原的碳源–汇效应及实现生态系统碳可持续发展提供基础数据。
胡中民
1. 数据内容(包括的要素及意义) 冰川厚度即冰川表面与冰川底部间的垂直距离。冰川厚度的分布不仅受冰川规模与冰下地形控制,同时也随着冰川对气候响应阶段不同而变化。数据包含冰川测线经纬度、高程、单点厚度、测量冰川冰体总储量、测量仪器型号等信息。 2. 数据来源与加工方法 冰川厚度主要来源于钻孔和探地雷达测厚(Ground-Penetrating Radar, GPR)。钻孔法即在冰面进行钻孔至冰下基岩,从而获得单点的冰川厚度;冰川雷达测厚技术则能精确地测量出测线上冰川厚度的连续分布,同时获取冰下基岩的地形特征,从而为冰川储量估算和冰川动力学研究提供必要的参数 3. 数据质量描述 冰川钻孔数据精度达到分米级。GPR雷达测厚由于冰川性质及底界面雷达信号强度差异,测厚精度理论上在5%-15%之间,。 4. 数据应用成果与前景 冰川厚度是获取冰下地形和冰川储量信息的先决条件。在冰川动力学数值模拟与模型研究中,冰川厚度是一个重要的基本输入参数。同时,冰川储量是表征冰川规模和冰川水资源状况的最直接参数,不仅对冰川水资源的准确评估和合理规划及有效利用十分重要,更对于区域社会经济发展和生态安全具有重要和深远
邬光剑
该数据集是2015年青藏高原基础数据,原始数据来源于国家基础地理信息中心,通过分幅数据拼接裁剪,形成青藏高原区域的数据。数据内容包括1:100万省级行政区划、1:100万道路、1:25万水系的地理图层。行政区划数据属性包括NAME、CODE、pinyin(名称、代码、拼音);道路数据属性包括:GB、RN、NAME、RTEG、TYPE(基础地理信息分类码、道路编码、道路名称、道路等级、道路类型);水系数据属性包括:GB、HYDC、NAME、PERIOD(基础地理信息分类码、水系名称代码、名称、时令)。
杨雅萍
该数据集是基于16个动态全球植被模式(TRENDY v8)在S2情景下(CO2+Climate)模拟的NPP,表征生态系统净初级生产力。数据来源于Le Quéré et al. (2019),具体信息和方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域,空间上用最近邻方法插值到0.5度,时间上保持了原有的月尺度。该数据集是标准的模型输出数据,常被用作评定总初级生产力的时间和空间格局,且与其它遥感观测、通量观测等数据进行比较和参考,具有实际意义和理论价值。
Stephen Sitch
地表太阳入射辐射(Surface Solar Irradiance,SSI)是FY-4A L2定量反演产品之一,覆盖范围为全圆盘,无投影,空间分辨率为4km,时间分辨率可达15min(20180921开始全天共40个观测时次,除每个整点时次的观测外,每3hr整点前后15min各有一次观测),光谱范围为0.2µm~5.0µm。产品输出要素包括总辐照度、水平面直接辐照度、散射辐照度,有效测量范围为0~1500 W/m2。FY-4A SSI产品在覆盖范围、空间分辨率、时间连续性、输出要素等方面质的提升为进一步开展其在太阳能、农业、生态、交通等专业气象服务中的精细化应用提供了可能。目前研究结果表明,与地基观测相比,FY-4A SSI 产品在中国地区的整体相关性在0.75以上,可用于中国地区太阳能资源评估。
申彦波, 胡玥明, 胡秀琴
青藏高原1km分辨率风能资源数据是采用中国气象局风能资源数值模拟评估系统(WERAS/CMA)研制的,该系统包含典型地形分类模块、中尺度模式WRF和CALMET动力诊断模式。首先从历史上出现过的天气类型中随机抽取典型日进行逐小时风速模拟,再根据天气型出现的频率统计分析得到风能资源的气候平均分布。本数据集包括青藏高原风速和风功率密度,风速的数据精度为0.01m/s,风功率密度的数据精度为0.01W/m2,数据的垂直高度为100米。数据经过了气象站观测资料的检验和订正,主要用于风能资源详查和风电场宏观选址。该数据为2008-2012年全国风能资源详查和评价项目产出数据(项目经费2.9亿),之后成为风能资源相关研究的基础数据,近期财政部没有计划投资再延长这个数据集。
朱蓉, 孙朝阳
汞是一种全球性污染物。青藏高原毗邻当前大气汞排放最严重的地区南亚,可能受到长距离传输的影响。利用冰芯和湖芯可以很好地重建大气汞传输和沉降历史。基于青藏高原和喜马拉雅山南坡8支湖芯和1支冰芯重建了工业革命以来的大气汞沉降历史。本数据集包含青藏高原纳木错、班公错、令戈错、枪勇湖、唐古拉湖和喜马拉雅山南坡Gosainkunda湖、Gokyo湖和Phewa湖的8支湖芯数据,各拉丹冬1支冰芯数据。冰芯数据分辨率为1年,湖芯数据2~20年,数据包含汞浓度数据和沉降通量数据。
康世昌
陆地实际蒸散发(ETa)是陆地生态系统的重要组成部分,它连接着水文、能量和碳循环。然而,准确监测和理解青藏高原(TP)实际蒸散发(ETa)的时空变化仍然非常困难。在此,利用MOD16-STM模型,在土壤属性、气象条件和遥感数据集的支持下,对青藏高原多年(2000-2018年)月度ETa进行了估算。估算出的ETa与9个通量塔的测量结果相关性非常好,均方根误差(平均RMSE=13.48 mm/月)和平均偏差(平均MB=2.85 mm/月)较低,相关系数(R=0.88)和一致性指数(IOA=0.92)较高。2000年至2018年,整个TP和东部TP(Lon>90°E)的空间平均ETa显著增加,增速分别为1.34 mm/年(P<0.05)和2.84 mm/年(P<0.05),而西部TP(Lon<90°E)未发现明显趋势。ETa及其组分的空间分布不均匀,从东南向西北TP递减。东部ETa呈显著上升趋势,西南部ETa全年呈显著下降趋势,尤其是冬春两季。土壤蒸发(Es)占总ETa的84%以上,其时间趋势的空间分布与年平均ETa相似。春季和夏季的ETa变化幅度和速率最大。陆表ETa的多年平均年值(面积2444.18×10^3 km2)为376.91±13.13 mm/年,相当于976.52±35.7 km3/年。整个TP(包括所有高原湖泊,面积2539.49×10^3 km2)的年平均蒸发水量约为1028.22±37.8 km3/年。新的ETa数据集有助于研究土地覆被变化对水文的影响,有助于对整个TP的水资源管理。
马耀明, 陈学龙, 袁令
本数据集是2019年9月川藏铁路沿线典型植被无人机高光谱观测数据,使用的是大疆M600 Resonon成像系统的机载光谱仪。包括2019年在拉萨的草原区域观测的高光谱数据,自带经纬度。高光谱调查时基本为晴天。飞行前进行了白板校准;采集数据时设有靶标(即适于草地的标准反光布),用于光谱校准;设有地面标志点(即有字母的泡沫板照片),并记录了每个标志点的经纬度坐标,用于几何精确校准。无人机高光谱相机记录的dn值,可使用Spectronon Pro软件转换为反射率。高光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
周广胜, 汲玉河, 吕晓敏, 宋兴阳
全面了解青藏高原多年冻土发生的变化,包括年平均地温(MAGT)和活动层厚度(ALT)的变化,对气候变化引起的多年冻土变化工程的实施具有重要意义。 青藏高原多年冻土活动层厚度和范围模拟数据集,参考2000-2015年CMFD再分析数据及中国气象局气象观测资料、1公里数字高程模型、地理空间环境预测因子、结合冰川和冰湖、钻孔数据等,利用统计和机器学习(ML)方法模拟了青藏高原多年冻土层磁通量和磁通量的当前和未来变化,得到RCP2.6、RCP4.5和RCP8.5三种不同浓度情景下2000-2015、2061-2080年平均地温(MAGT)和活动层厚度(ALT)范围数据,分辨率为0.1*0.1度。 模拟结果表明,利用统计和ML相结合的方法模拟冻土热状态所需的参数和输入变量较少,可以有效地了解青藏高原冻土对气候变化的响应。
倪杰, 吴通华
采用计算草地实际净初级生产力,CASA模型是一种光能利用率模型,生产力的估算主要由植物吸收的光合有效辐射(APAR)与光能转化率(ε)2个变量决定。植被所吸收的光合有效辐射(APAR)取决于太阳总辐射和植被对光合有效辐射的吸收比例;采用TEM(Terrestrial Ecosystem Model)模型计算草地潜在生产力,首先计算草地的总初级生产力(GPP),再计算植物自养呼吸(Ra),最后得出草地净初级生产力(NPP)。TEM模型是气候驱动的生产力模型,所需的参数有:植被类型、土壤质地、土壤水分、潜在蒸散、太阳辐射、云量、降水、温度和大气CO2浓度;利用随机森林算法(RF)计算青藏高原草地潜在地上生物量,预测变量包含气候、土壤、地形等14个变量。气候变量包含生长季(5-9月)平均日较差、生长季总降水、生长季平均温度和非生长季(前一年10 - 当年4月)平均日较差、非生长季总降水、非生长季平均温度。地形变量包括高程、坡度、坡向。土壤变量包含土壤质地(砂、粉、粘土含量)、土壤pH值和土壤有机碳。 实际净初级生产力和潜在净生产力数据年限为2000-2017;潜在草地地上生物量数据年限为(2014-2018)。
牛犇, 张宪洲
本数据集为青藏高原区域2016年日分辨率0.02° x0.02° BRDF 核驱动模型核系数数据集。采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,联合极轨卫星数据MODIS反射率和静止卫星葵花8-AHI地表反射率数据反演时空连续的日分辨率的高精度BRDF。MODIS地表反射率数据及AHI天顶反射率数据集为官方网站下载,经过配准、大气校正等处理,以5天为周期合成日分辨率BRDF。相较于同类产品,,该BRDF合成周期最短,且考虑了地形效应,对快速变化地表特征的捕捉更具有优势,且时空连续性更好。可有效支撑j反射率角度效应订正、或用于与BRDF相关地表参数的高精度估算。
闻建光, 唐勇, 游冬琴
该数据集包含纳木那尼冰川(北支)2008-2018年的年物质平衡数据,侧碛和末端自动气象站2011-2019年日气象数据及冰面上2018-2019年的月均气温和相对湿度数据。 冰川物质平衡数据观测时间为每年9月底或10月初,采用冰面测杆和雪坑结合的方法进行观测,获取测杆点的物质平衡数据,然后计算整条冰川的年净物质平衡(具体方法见参考文献)。 2台自动气象站(AWSs,Campbell公司)分别安装在纳木那尼冰川侧碛和末端。AWS1观测时间为2011年10月1日-2018年11月30日,观测数据包括气温(℃)、相对湿度(%)、太阳辐射(W/m2),仪器半小时记录一次气象资料。AWS2观测时间为2010年10月19日-2018年11月30日,观测数据包括风速(m/s)、大气压(hPa)、降水 (mm),仪器每小时记录一次气象资料。首先剔除原始记录中的少量异常数据,然后计算这些参数的日值。数据质量方面:原始数据质量较好,缺失较少。 两个温湿度探头(型号:Hobo MX2301)于2018年安装于冰面,半小时记录一次数据。将半小时数据处理为月均值。原始数据质量较好,没有缺失。 数据以excel文件存储。 该观测资料可以为研究喜马拉雅西段北坡气候、冰川、水资源及其之间的关系提供重要的基础数据,可供研究气候、水文、冰川等的科研工作者使用。
赵华标
整编了目前北半球数量最多的年平均地温(1002个)和活动层厚度(452个)地面观测数据,利用四种统计学习模型融合这些地面观测与多源遥感等数据产品,集合模拟得到了代表2000-2016年北半球多年冻土区年平均地温、活动层厚度、多年冻土发生概率和多年冻土水热分带数据集,空间分辨率为1公里,验证表明具有更高的精度。可为北半球多年冻土区的工程规划、设计、环境模拟与评价等提供数据支持,也可作为北半球多年冻土现状的数据基准,评估未来多年冻土变化及其影响。
冉有华, 李新, 程国栋, 车金星, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, 金会军, Jaroslav Obu, Masahiro Hori, 俞祁浩, 常晓丽
全面估算了1132个大于1 km2湖泊的水量变化。总的来说,1976至2019年间,湖泊水储量增加了169.7±15.1 Gt(3.9±0.4 Gt yr-1),主要发生在内流区(157.6±11.6或3.7±0.3 Gt yr-1)。1976至1995年间,湖泊水量显示减少(-45.2±8.2Gt或-2.4±0.4Gt yr-1),但在1995至2019年间,大幅增加(214.9±12.7Gt或9.0±0.5Gt yr-1)。2010至2015年间,水量增速减缓(23.1±6.5 Gt或4.6±1.3 Gt yr-1),随后在2015至2019年间再次出现高值(65.7±6.7 Gt或16.4±1.7 Gt yr-1)。在1976-2019年间,冰川补给湖水量增加(127.1±14.3 Gt)远远高于非冰川补给湖(42.6±4.9 Gt),这也与冰川补给湖数量多,面积广有关。另外,封闭湖水量增幅(161.9±14.0 Gt)大大高于外流湖(7.8±5.8 Gt)。
张国庆
基于1980-2019年青藏高原及附近105个气象站点的气象数据(数据源于中国气象局数据国家气象科学数据中心)计算含氧量,发现含氧量和海拔显著线性相关,y=-0.0263x+283.8,R2=0.9819。因此基于DEM数据栅格计算得到含氧量分布图。由于青藏高原地区自然环境的限制,相关定点观察机构较少,本数据可在一定程度上反应青藏高原地区含氧量的分布情况,对青藏高原人类生存环境等相关研究有一定的借鉴意义。
信忠保
该数据集依据中分辨率长时间序列遥感影像Landsat,通过影像融合、遥感解译、数据反演等多种方式获得青藏高原1990/1995/2002/2005/2010/2015六期生态系统类型情况分布图,作出25年(1990-2015)青藏高原生态本底图,空间参考系统为Krasovsky_1940_Albers,空间分辨率为1000m。青藏高原各类生态系统面积统计表明,1990-2015年间,林地、草地面积略有减少,城镇用地、农村居民点及其他建设用地面积增加,河流、湖泊等水体面积增加,永久性冰川积雪面积减少。该图集可用于青藏高原生态工程的规划、设计及管理,并可作为生态系统现状的基准,用于阐明青藏高原重大生态工程建设的时空格局,揭示青藏高原生态系统格局和功能的变化规律和区域差异。
赵慧, 王小丹
青藏高原是陆地表面中低纬度地区多年冻土分布最为广泛的地区,大量研究表明,青藏高原多年冻土的存在和变化强烈影响着区域乃至全球的水文、生态和气候系统。但由于青藏高原高寒缺氧、生存条件恶劣、交通极不便利,数据资源非常贫乏,尤其是在极高海拔的多年冻土区,这种状态不仅严重地限制了对于该区域气候、环境和冻土等诸多方面的研究和理解,也严重限制了适应于该区域遥感反演算法的研发、各类陆面乃至于地球系统模型的模拟和改进,而且也限制了该区域经济发展和国家战略的规划。过去几十年,我们研究团队在青藏高原多年冻土区建立了综合观测网络,展开了对多年冻土地温、活动层水热以及气象因子的系统监测,形成了能够基本覆盖青藏高原高平面的、与多年冻土有关的多要素观测数据。本数据集包括在这一区域的6个自动气象观测站、12个活动层及84个钻孔长时间序列观测数据,主要观测要素包括气象(气温、降水、风速、比湿等)、土壤水热、活动层厚度及冻土温度等观测数据。各观测数据在收集和处理过程中都已经过了严格的质量控制。本数据集面向多学科背景的科学家发布(如:冰冻圈、水文学、生态学和气象科学等),将进一步促进青藏高原水文模型、陆面过程模型和气候模型的验证、发展和改进。
赵林, 胡国杰, 邹德富, 吴通华, 杜二计, 刘广岳, 肖瑶, 李韧, 庞强强, 乔永平, 吴晓东, 孙哲, 幸赞品, 盛煜, 赵拥华, 史健宗, 谢昌卫, 汪凌霄, 王翀, 程国栋
青藏高原蒸散发是利用遥感、气象、以及野外通量观测站等数据,采用多尺度-多源数据协同的陆表蒸散遥感模型-ETWatch进行计算的。ETWatch采用了余项法与P-M公式相结合的方法计算蒸散。首先根据数据影像的特点选择适用的模型反演晴好日蒸散;遥感模型常常因为天气状况无法获取清晰的图像而造成数据缺失,为获得逐日连续的蒸散量的,引入Penman-Monteith公式,将晴好日的蒸散结果作为“关键帧”,将关键帧的地表阻抗信息为基础,构建地表阻抗时间拓展模型,填补因无影像造成的数据缺失,利用逐日的气象数据,重建蒸散量的时间序列数据,并通过数据融合模型,将中低分辨率的蒸散时间变化信息与高分辨率的蒸散空间差异信息的相结合,构建高时空分辨率蒸散数据集,从而生成青藏高原8km分辨率蒸散数据集(1990-2015)。
王晓峰
本数据集包含青藏高原地区近50年(1950-2002)的自然灾害统计信息,包括干旱、雪灾、霜灾、冰雹、洪涝、风灾、雷电灾害、寒潮和强降温、低温冻害、大风沙尘暴、虫灾、鼠害等气象灾害产生的时间地点及所造成的损失及影响。 青海和西藏是青藏高原的主体,青藏高原是我国生物物种形成、演化的中心之一,也是国际科技界瞩目的研究气候和生态环境变化的敏感区和脆弱带,其复杂的地形条件,高峻的海拔高度和严酷的气候条件决定了生态环境十分脆弱,,成为我国自然灾害发生最频繁的地区。 数据摘录自《中国气象灾害大典·青海卷》、《中国气象灾害大典·西藏卷》,人工录入总结校对。
统计局
该数据集是基于一系列微波遥感数据获取,包含Special Sensor Microwave Imager (SSM/I), Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E)等,表征植被的含水量,可作为初级生产力的参考。数据来源于Liu et al. (2015),具体计算方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域。该数据集常被用作评定植被绿度和初级生产力的时间和空间格局,具有实际意义和理论价值。
刘毅
基于青藏高原土壤温湿度观测网玛曲站点建立的地基L波段微波辐射计观测系统(ELBARA-III,由欧洲航空局提供),本数据集囊括了水平和垂直极化的L波段亮温数据,地表及以下不同层土壤湿度和温度数据,地表通量(如感热、潜热、碳通量),气象要素数据(如降水、上下行长波/短波辐射、空气温度和湿度、气压)以及植被叶面积指数LAI和土壤性质等辅助数据。此多年尺度的数据集可用于提高对陆面过程、微波辐射过程的理解,验证SMOS和SMAP卫星亮温观测和土壤湿度反演结果,校验微波辐射传输模型中的假设条件,验证陆面模式输出以及再分析资料,反演土壤物理性质,量化陆-气间的水、碳、能量交换,并将帮助定量化地球系统模型中参数化方案的偏差和不确定性,从而提出相应改进方案。 ELBARA-III双极化亮温数据可通过测量的辐射计电压和校准的内部噪声温度计算得到。该数据质量可靠,其质量控制主要通过:1)对辐射计输出的原始电压数据(以800Hz采样频率)进行直方图检验,利用统计指标过滤射频干扰对ELBARA-III微波信号数据的影响;2)检查辐射计进行天空辐射测量时两天线端口的电压值是否相似,天线电缆有无损耗;3)分析仪器内部温度、主动冷源温度和环境温度;4)分析不同入射角度的双极化亮温的特点。 - 时间分辨率:30分钟 - 空间分辨率:入射角为40°~ 70°,间隔为5°,观测覆盖范围为3.31 m^2~ 43.64 m^2 - 测量精度:亮温,1 K;土壤水分,0.001 m^3 m^-3;土壤温度,0.1 °C - 单位:亮温,K;土壤水分,m^3 m^-3;土壤温度,°C /K
Bob Su, 文军
本数据集包含2001-2018年青藏高原月平均地表实际蒸散发量,空间分辨率为0.1度。数据集主要以卫星遥感数据(MODIS)和再分析气象数据(CMFD)作为输入,利用地表能量平衡系统模型(SEBS)计算得到。在计算湍流通量的过程中引入了次网格地形拖曳参数化方案,提高了对地表感热通量和潜热通量的模拟。另外,利用青藏高原6个湍流通量站的观测数据对模型输出的蒸散发量进行了验证,显示出了较高的精度。该数据集可用于研究青藏高原陆气相互作用和水循环特征。
韩存博, 马耀明, 王宾宾, 仲雷, 马伟强, 陈学龙, 苏中波
包含青藏高原地区气溶胶类型和气溶胶光学厚度,两类数据。 气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终气溶胶类型数据(共12种)和质量控制结果。充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。 气溶胶光学厚度(AOD)采用自主研发的可见光波段遥感反演方法,结合Merra-2模式数据与NASA的官方产品MOD04制作,数据覆盖时间从2000年到2019年,时间分辨率为逐日,空间分辨率为0.1度。反演方法主要采用自主研发的APRS算法,反演了冰雪上空的气溶胶光学厚度,算法考虑了冰雪地表的BRDF特性,适用于冰雪上空气溶胶光学厚度的反演。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁, 赵传峰
青藏高原五大河源区冰川径流数据集覆盖时间从1971年到2015年, 时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源)。 数据以多源遥感和实测数据为基础,使用青藏高原五大河源区及其周边气象站点日尺度气象数据、UMD-1KM的全球植被产品、IGBP-DIS土壤数据库、第一、二次冰川编目数据等驱动模型,耦合了冰川模块的分布式水文模型VIC-CAS模拟形成了冰川径流数据。并使用站点实测数据对模拟结果进行了验证, 增强质量控制。 数据指标包含:冰川径流率(Rate of glacier runoff: %),总径流(Total Runoff,mm/a),雪径流率(Rate of snow runoff: %),降雨径流率 (降雨径流率:%)。
王世金
湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要指标。但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行监测,可填补观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集。数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。
田帮森, 邱玉宝
这组数据是1974-2013年期间喜马拉雅山脉西段纳木那尼峰地区年均冰川物质平衡变化和冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由两个阶段的DEM高程差数据DHSRTM2000-DEM1974(即DH2000-1974)、DHTanDEM2013-SRTM2000(DH2013-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHSRTM2000-DEM1974(DH2000-1974), 是2000年SRTM DEM2000数据和1974年1:50,000的DEM1974之间的高程差,即DH2000-1974 =SRTM2000 – DEM1974。DEM1974是由我国1974年航拍照片绘制1:50,000地形图生成的,两期DEM数据配准后,非冰川区高程数据精度为±0.13 m a-1。DHTanDEM2013-SRTM2000(DH2013-2000),是基于2013年10月17日一对TerraSAR-X和TanDEM-X (TSX/TDX)雷达数据与2000年SRTM DEM数据、采用差分干涉技术(D-InSAR)获取,在非冰川区高程数据精度为±0.04 m a-1。 表格中包括的数据项有: Area,冰川面积(m2)、GLIMS_Id表示冰川编号,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_13表示2000-2013年间冰川每年的冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_13表示2000-2013年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2013表示2000-2013年间每条冰川每年的冰储量变化(m3 w.e. a-1), Uncerty_MB是每条冰川年均冰川物质平衡数据误差(m w.e. a-1), Uncerty_MC表示每条冰川每年的冰储量变化的最大误差范围(m3 w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。 2019年中国高寒地区地表过程与环境观测网络水文数据集,主要收集:藏东南站、珠峰站、玉龙雪山站、纳木错站、阿里站、天山站等六个站 点实测水文(径流、水位、水温等)数据。 藏东南站:流量数据,包含2019年4次利用M9测流数,有平均流速、流量和最大水深等数据;相对水位数据采用hobo压力式水位仪测量,包含2019年全年日均相对水位和水温数据。 纳木错站:流量数据,包括2019年4次利用国产LS-1206B手持流速仪测量数据,包含河宽和流量数据,水位数据采用hobo压力式水位仪测量,包含2019年原始1小时的水压、水温和电量,通过水压可以计算相对水位; 珠峰站:绒布河流量,包括2019年6-9月13次利用国产LS-1206B手持流速仪测量数据,包含河宽和流量数据; 阿里站:流量数据:包括2019年利用河锚M9不定期测量的22次数据,相对水位数据采用hobo压力式水位仪测量,包含2019年全年每小时水位和水温数据; 天山站:水位数据:包括3个点2019年的日平均水位 玉龙雪山站: 包括木家桥2019年1-10月流量数据
朱立平, 彭萍
山区受到复杂地形影响,其活动层厚度表现出极强的空间异质性。本数据集利用探地雷达方法和其他传统方法系统勘察了黑河上游活动层厚度。数据采集覆盖了不同海拔、地表类型、土壤质地和地形信息,因此具有较强的代表性。根据与其他直接测量活动层厚度方法对比后得到探地雷达测量的活动层厚度数据误差约为8cm,具有非常高的可信度。该数据集可为了解该区域活动层厚度提供详实的野外数据,验证陆面模型,尤其是冻土研究,提供验证数据集。
曹斌
该数据集包含1975-2013年青藏高原地区的海螺沟冰川、帕隆94号冰川、七一冰川、小冬克玛底冰川、慕士塔格冰川15号冰川、煤矿冰川以及NM551冰川物质平衡数据。基于世界冰川目录中收集的冰川物质平衡观测数据(World Glacier Inventory,https://nsidc.org/data/G10002/versions/1)以及姚檀栋等发布于第三极环境数据中心平台的(Third Pole Environment Database,http://en.tpedatabase.cn/)冰川物质平衡观测数据以及Global Land Data Assimilation System(GLDAS)数据集提供的气象要素数据(meteo.xlsx中为提取出的各冰川几何中心所在数据网格上的气象要素,包括降水、近地面气温、净辐射、雪面蒸发和雪深时间序列),采用冰川物质平衡计算公式重构了1975-2013年上述七个冰川的物质平衡序列。此重构数据是基于已发布的冰川物质平衡数据对冰川物质平衡公式中的参数进行了率定,并利用冰川物质平衡公式对长时间序列物质平衡进行了重构,其中参数率定结果以及长时间序列数据重构结果均与相关研究成果进行了比对,论证了该数据成果的合理性,具体可参考以下论文。该数据可用于所涉及冰川区域水资源变化研究、扩充了青藏高原冰川物质平衡数据集,并可为未来冰川物质平衡重构相关研究提供参考。
刘晓婉
青藏高原0.01°空间分辨率近地表气温数据集(1979-2018)通过对中国区域地面气象要素驱动数据集中空间分辨率为0.1°的气温数据进行降尺度得到。它包含日均气温和三小时分辨率的瞬时气温。其空间分辨率为0.01°(约1km)。时间范围为1979年到2018年。空间范围为73°E-106°E, 23°N-40°N。该数据集可以为地表辐射与能量平衡、气候变化、水文气象等领域的研究与应用提供较高空间分辨率的近地表气温数据。
丁利荣, 周纪, 王伟, 马晋
青藏高原野外观测研究平台是开展青藏高原科学观测和研究的前沿阵地。基于高原地表过程与环境变化的陆面-边界层立体综合观测为青藏高原地气相互作用机理及其影响研究提供了大量的珍贵数据。本数据集综合了珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站、那曲高寒气候环境观测研究站、纳木错多圈层综合观测研究站、阿里荒漠环境综合观测研究站、慕士塔格西风带环境综合观测研究站2005-2016年逐小时大气、土壤和涡动观测数据。包含了由多层风速风向、气温、湿度以及气压、降水组成的梯度观测数据,辐射四分量数据,多层土壤温湿度和土壤热通量观测数据以及感热通量、潜热通量和二氧化碳通量组成的湍流数据。这些数据能广泛的应用于青藏高原气象要素特征分析、遥感产品评估和遥感反演算法的发展、数值模拟的评估和发展等研究中。
马耀明
本数据集包括青藏高原及其周边共5个采样点碳质气溶胶包括有机碳和黑碳的浓度和空间分布信息。本数据包含的黑碳和有机碳数据采用膜采样,滤膜为石英滤膜,采样器为大流量采样器,切割粒径为总悬浮颗粒物(TSP),每个滤膜采样周期为24h或48h。采用热光法测定其有机碳和黑碳含量,方法检出限分别为0.43和0.12 ug/cm2。此外,还计算了黑碳的吸光参数(MAC)。该数据集将作为青藏高原及其周边区域碳质气溶胶污染状况及背景值的参考数据集。
青藏高原由于高云覆盖,通常用来监测湖泊面积的光学遥感影像数据,如Landsat只能用来监测湖泊年尺度面积变化,而对湖泊季节变化研究了解较少。使用Sentinel-1 SAR数据,对青藏高原大于50平方公里湖泊月尺度面积进行了提取。研究显示,湖泊的季节变化显示出截然不同的模式,面积较大的湖泊(> 100 km2)在8-9月达到峰值,而较小的湖泊(50-100 km2)面积在6-7月达到峰值。封闭湖泊面积的季节峰值更突出,而外流湖的季节峰值更平缓。冰川补给湖相对于非冰川补给湖显示了延迟的面积峰值。同时,大尺度的大气环流,如西风、印度季风、和东亚季风也影响着湖泊面积的季节变化。此研究为监测湖泊面积年内变化弥补了空白。
张宇, 张国庆
青藏高原的水土资源匹配数据,由站点气象数据(2008-2016年,国家气象数据共享网)经过彭曼公式计算得出的潜在蒸散发数据,利用土地利用的不同土地类型,根据下垫面影响系数计算现有土地利用下的蒸散发量;以及气象数据中的站点降雨数据插值得到的降雨数据,根据两者差值得到水土资源匹配系数。实际降雨与现有土地利用条件下的需水量之间的差值来反映水土资源的匹配性,数值越大匹配性越好。水土资源的匹配情况的空间分布能为进一步了解青藏高原的农牧业资源情况做铺垫。
董凌霄
本数据集采用SMMR(1979-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)逐日亮温数据,由双指标(TB_37v,SG)冻融判别算法生成,分类结果包含冻结地表、融化地表、沙漠及水体四种类型。数据覆盖范围为三江源区域,空间分辨率为25.067525 km,EASE Grid投影方式,以Geotif格式存储。像元数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表水体。因为该数据集中所有tif文件描述的是三江源国家公园范围,所以这些文件的行列号信息是不变的,摘录如下(其中cellsize单位为m): ncols 52 nrows 28 cellsize 25067.525 nodata_value 0
晋锐
该数据集是基于MODIS 16天合成的NDVI产品(MOD13Q1 collection6)估算的三江源国家公园区域的植被生长季开始(Start of Season: SOS)和生长季结束的日期(End of Season: EOS)。共用了两种常见的物候期估算方法,分别是基于多项式拟合的阈值提取法(文件名中有poly字符)和基于双逻辑曲线(double logistic function)拟合后的拐点提取法(文件名中有sig字符)。该数据可以用来分析植被物候期与气候变化的关系。时间范围为2001年至2020年。空间分辨率为250m。数据中包含4个子文件夹,CJYYQ_phen是三江源国家公园长江源园区的物候结果,HHYYQ_phen是三江源国家公园黄河源园区的物候结果,LCJYYQ_phen是三江源国家公园澜沧江源园区的物候结果,SJY_phen是整个三江源区域的物候。 数据格式为geotif,建议使用arcmap或者Python+GDAL浏览和处理数据。
王旭峰
1) 数据内容:为了描述青藏高原上的大气水资源,我们提供了两个变量。 一种叫做大气柱水汽收入(CWI),定义为单位面积大气柱水汽通量散度和地表面蒸发之和。 CWI变量为0.25×0.25度网格资料,单位为kg/m2或毫米。 另一个是大气水塔指数(AWTI),是整个TP区域大气水资源净收入的总和,AWTI即cwi乘以高原(75-105E, 25-40N, altitude> 2.5km)格点面积之和,单位为Gt. 2) 数据来源:基于ERA5再分析数据产品计算得到 3) 数据质量描述:ERA5是目前精度较高的再分析数据 4) 数据应用成果及前景: 上述两个变量提供了高原大气中水汽净收入量,
阎虹如
利用长时间序列Landsat遥感数据,获取了整个青藏高原近50年(1970s~2021)共15期湖泊观测数据,对大于1平方公里湖泊的数量及面积变化进行了详细分析。研究发现青藏高原湖泊数量从1970年代的1080个增加到2021年的~1400个。相应地,湖泊面积从1970年代的4万平方公里增加到了2021年的5万平方公里,净增加了1万平方公里。青藏高原湖泊并非持续单调地增加。在1970s至1995年间,大部分湖泊呈现萎缩状态;但在1995年之后,除2015年外,青藏高原湖泊的数量和面积总体呈现出持续增加趋势。流域尺度上,除雅鲁藏布流域外,均在扩张。
张国庆
时空连续的积雪覆盖面积对陆表能量水分交换、山区水文、陆面模式、数值天气预报以及气候变化研究具有重要意义,而云的大量存在,造成光学遥感积雪覆盖面积中严重的数据空缺。本数据集采用Terra和Aqua双星MODIS观测,以及FY-2E和FY-2F VISSR双星观测,获取受云影响较小的积雪覆盖 度(亚像元积雪覆盖),并根据时序信息补充剩余云像元的积雪覆盖度,最终得到无云积雪覆盖度。本数据集包括青藏高原0.005度(约500 m)和中国地区的0.05度(约5 km)空间分辨率逐日积雪覆盖度。
蒋玲梅
本数据集是2017年青藏高原冰川数据,使用了210景Landsat8 OLI卫星多光谱遥感数据,时间从2013年至2018年,90%来源于2017年,85%的Landsat8 OLI数据成像于冬季。冰川数据是青藏高原净冰川覆盖范围,不包括表碛物覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容: Value是冰川斑块在系统中自动生成的编码。 格网单元:30m 数据的投影方式:Albers等积圆锥投影。 数据加工方法:基于210景Landsat8 OLI卫星多光谱遥感数据,校正、镶嵌为假彩色合成影像(RGB:654),采用人工目视解译方法,参考波段比值法结果,结合SRTM DEM V4.1数据与Google Earth和HJ1A/1B卫星同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区的陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(15m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法提取获得的山地冰川数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137。 原始遥感资料数据精度:30m 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(15m)。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302), 第二次青藏高原综合科学考察研究资助(2019QZKK0202),国家自然科学基金项目(41530748, 91747201)、中国科学院“十三五”信息化建设专项资助(XXH13505-06)。
叶庆华
本数据集是基于MODIS数据进行处理和分析后得到,通过改进不同下垫面下的不同积雪提取算法,提高了积雪范围识别精度,同时利用隐马尔科夫去云算法和SSM/I雪水当量结合,最终生成完全无云的逐日积雪面积产品。取值范围: 1:积雪;0 非积雪。空间分辨率为0.005 度(约500m),时间范围是2000年2月24日至2019年12月31日。 数据格式为geotiff,推荐使用Arcmap或python +GDAL打开和处理数据
郝晓华
本数据集来源于中国长时间序列雪深数据集,利用三江源边界进行提取形成三江源雪深数据集。取值范围:0-100 cm。时间分辨率:逐日。空间分辨率为0.25 度(约25km),时间范围是1980年1月1日至2020年12月31日。雪深数据基于星载被动微波遥感数据生产,使用了三个不同的被动微波传感器数据,它们分别是SMMR,SSM/I和SSMI/S。由于不同的传感器之间存在一定的系统偏差,因此,首先对不同传感器的数据进行了交叉订正,然后再基于被动微波亮度温度梯度法制作中国长时间序列雪深数据集。头文件信息可参考数据集header.txt。
戴礼云
青藏高原湖泊广布,近年来呈现普遍扩张的趋势。掌握这些湖泊的水位及水量变化信息对认识区域水文-气候交互机制及其演变规律意义重大。本数据集包含青藏高原52个大、中型湖泊2000 - 2017年的水位、水量变化,面积-水位关系曲线等信息,多数湖泊的水位及水量变化时间分辨率在月尺度或旬尺度。本数据基于多源测高卫星数据和Landsat光学影像制作,将光学影像观测到的湖泊岸线变动转化为水位信息(简称光学水位),并且借助光学水位移除了多源测高水位之间系统偏差。野外实验和理论分析的结果一致表明光学水位的精度在0.1 - 0.2 m,与测高水位精度相当,测高水位的不确定性用同一周期内有效水面足迹点高程的标准差表示,已经包含在数据集中。本数据集可以应用于水资源和水安全管理,湖泊流域水文分析,水量平衡分析等,尤其在湖泊溢流洪水监测方面有较大的潜力。
李兴东, 龙笛, 黄琦, 韩鹏飞, 赵凡玉, 荣田佳秀
青藏高原地温分布图是基于程国栋(1984)提出的多年冻土稳定型划分指标(表1),利用统计模拟的年变化深度地温数据划分的。利用地理加权回归方法,融合2010年左右233个钻孔年变化深度处的年平均地温数据和遥感积雪日数、GLASS叶面积指数、SoilGrids250m的土壤沙粒含量、土壤粘粒含量、土壤粉粒含量、土壤有机质和土壤体密度数据产品、中国气象局陆面数据同化系统(CLDAS)输出的二版土壤湿度产品和融合了近4万区域自动气象站和FY2/EMSIP降水产品的融合产品。估计得到了代表2010年代的青藏高原1km分辨率年冻土稳定性分布图。数据格式为Arcgis Raster。
冉有华
高质量的多年冻土图是多年冻土环境效应研究和寒区工程应用的基础数据。该数据集是在系统整编青藏高原2005-2015年共237个钻孔位置年变化深度年平均地温测量数据基础上,利用支持向量回归模型融合了这些地面观测与遥感冻结指数、融化指数、积雪日数、叶面积指数、土壤容重、高程和高质量的土壤水分再分析资料, 集合模拟了代表2005-2015年的青藏高原1km分辨率年平均地温分布图。10折交叉验证表明,模拟的年平均地温的均方根误差约为0.75 °C, 偏差约0.01 °C。基于高海拔多年冻土稳定性分类体系,利用年平均地温,划分了多年冻土的热稳定类型。数据显示,青藏高原多年冻土面积约115.02 (105.47-129.59) *104 km2, 其中, 极稳定型(<-5.0 °C)、稳定型(-3.0~-5.0 °C)、亚稳定型(-1.5~-3.0 °C)、过渡型(-0.5~-1.5 °C)和不稳定型(>-0.5 °C)多年冻土面积分别为0.86*104 km2, 9.62*104 km2, 38.45*104 km2, 42.29*104 km2和23.80*104 km2。该数据集可用于寒区工程的规划、设计及生态规划与管理等,并可作为多年冻土现状的数据基准,用于评估未来青藏高原多年冻土的变化。关于该数据更详细的方法等信息可参考《中国科学:地球科学》的论文(Ran et al., 2020)。
冉有华, 李新
三极冰芯数据主要来源于美国国家海洋与大气局(NOAA: National Oceanic and Atmospheric Administration, https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core )。原始数据主要是文本格式,由相关单位与研究人员志愿提供。数据主要包含了氧同位素、温室气体浓度、冰芯年龄、等原始观测数据,也包含研究者根据观测数据生产的历史气温、二氧化碳浓度、甲烷浓度等。数据主要分为南极、北极、格陵兰岛及第三极区域。数据库包含打钻地址、时间、衍生产品、对应观测站点数据、参考文献等要素。衍生产品包含产品名称、类型、时间等要素。空间位置分为南极、北极、第三极,包含阿拉斯加、加拿大、俄罗斯、格陵兰岛等地区。对收集的数据通过整理与后处理后,采用Microsoft Office自带的Access数据库管理系统建立冰芯数据库。按照南极、北极、格林兰岛、第三极,分成四个子数据库,打开每个数据库中第一个表为readme,该表包含每个数据表信息及参考文献。
叶爱中
冰川对区域和全球气候变化异常敏感,因此常被作为气候变化的指示器之一,其相关参数也是气候变化研究的关键指标,特别是在地球三极环境变化对比研究中,冰川速度的时间和空间差异性对比是气候变化研究的重点之一。但由于冰川基本位于高海拔、高纬度和高寒地区,自然环境恶劣、人迹罕至,缺乏且难以开展大规模冰川运动的常规现场测量工作,为了能够及时高效、全面和准确地了解三极地区冰川运动状况,利用雷达干涉测量、雷达和光学影像像素跟踪等方法获取了三极地区部分典型冰川2000-2017年部分年份的表面运动分布情况,为三极冰川运动的对比分析提供了基础资料。数据集包含12个栅格文件,栅格文件名为“某地区某时段冰川运动”,每一幅栅格图主要包含以某一典型冰川所在的区域流速分布。
闫世勇
本产品基于多源遥感DEM数据生成,步骤如下:以Landsat ETM+、SRTM 和ICESat遥感数据为参考在相对稳定和平坦的地形区域内选控制点。控制点水平坐标是以Landsat ETM+ L1T全色影像作为水平参考进行获取。控制点的高度坐标则主要通过ICESat GLA14高程数据进行获取,在无ICEsat分布的区域内以SRTM高程数据补充。利用选取的控制点和自动生成的连接点,通过Brown’s物理模型对透镜畸变和残余形变进行补偿,使得所有立体像对的空中三角测量结果中影像总RMSE<1个像素。为了对提取的DEM数据进行编辑以消除明显的高程异常值,采用了DEM内插、DEM滤波和DEM平滑等方法对冰川上的DEM进行了编辑,并对西昆仑-西和西昆仑-东区域的KH-9 DEM数据进行了拼接,从而形成产品。
周建民
基于WRF模式,以ERA5再分析资料为初始和边界场,通过动力降尺度的方法,初步获得了青藏高原高分辨率低层大气结构和地气交换数据集。该数据集时间范围为2014年8月1日-8月31日,时间分辨率1小时,水平范围25oN-40oN,70oE-105oE,水平分辨率为0.05°。数据格式为NetCDF,每一小时数据输出一个文件,文件以日期命名。低层大气结构数据包含温度、相对湿度、水汽混合比、位势高度、经向风、纬向风气象要素,垂直方向为34层等压面;地气交换数据集包含地表接收的向上/向下短波辐射、向上/向下长波辐射、地表感热和通量、2米气温和水汽混合比、10米风等。该数据集可对青藏高原天气过程和气候环境研究提供数据支撑。
马舒坡
湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要的指标,但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行了监测,填补了观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集,可以获得这些湖泊不同类型湖冰的分布,数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。
邱玉宝, 田帮森
河湖冰物候对气候变化敏感,是指示气候变化的重要指示因子。308个Excel文件名称对应于湖泊编号。每个excel文件包含6个列,包含2002年7月至2018年6月对应湖泊的日冰覆盖率信息。每一列的属性分别为:日期、湖水覆盖率、湖水冰覆盖率、云覆盖率、湖水覆盖率和经过云处理后的湖面冰覆盖率。通常以0.1、0.9的冰覆盖面积比作为判别湖泊冰物候的依据。数据集包含的excel文件可以进一步获取四个湖冰物候参数:开始冻结(FUS),完全冻结(FUE),开始融化(BUS),完全融化(BUE),和92个湖泊,可获取两个参数,FUS和BUE。
邱玉宝
青藏高原珠峰站和纳木错站点气溶胶光学厚度数据是基于中科院青藏高原所大气辐射观在珠峰站和纳木错站点的观测数据产品而形成,数据覆盖时间从2017年到2019年,时间分辨率为逐小时,覆盖站点为珠峰站和纳木错站点,经纬度坐标为(珠峰站:28.365N, 86.948E,纳木错站:30.7725N,90.9626E)。观测数据来源为MFRSR仪器观测的辐射数据反演获得,所包含特征变量为气溶胶光学厚度,观测反演误差范围约为15%。数据格式为txt格式。
丛志远
青藏高原湖泊众多,该地区湖泊冰期物候和持续时间对区域和全球气候变化非常敏感,因此被用作气候变化研究的关键指标,特别是地球三极环境变化对比研究。但由于其自然环境恶劣,人口稀少,缺乏对湖泊冰物候的常规现场测量。利用中分辨率成像光谱仪(MODIS)归一化差雪指数(NDSI)数据,以500米的分辨率对湖泊冰进行了监测,填补了观测空白。利用传统的雪图算法对晴天条件下的湖泊日冰量和覆盖范围进行检测,利用湖泊表面条件的时空连续性,通过一系列步骤对云层覆盖条件下的湖泊日冰量和覆盖范围进行重新确定。通过时间序列分析308个大于3km2的湖泊确定为湖冰范围和覆盖的有效记录,形成每日湖冰范围和覆盖数据集,包括216个湖泊。
邱玉宝
多年冻土约占青藏高原陆地面积的46%,是冰冻圈重要组成部分。但是,由于多年冻土埋藏较深,其分布难以通过地表观测直接获取,因此,研究多年冻土分布往往依赖于地面观测。该数据集基于多种观测方法,包括:钻孔勘察、坑探、土壤温度和探地雷达,获取青藏高原多年冻土分布点尺度信息,并归档形成首个青藏高原多年冻土存在性数据集(v1.0)。数据集包含626条信息,覆盖不同海拔、坡向和气候状态。同时,根据观测方式和数据质量,对数据的置信度进行了分类,为不同研究目的使用该数据提供了参考。该数据为多年冻土分布提供了本底信息,可用于多年冻土模拟验证和未来气候变暖下多年冻土退化评估。
曹斌, 张廷军, 吴青柏, 盛煜, 赵林, 邹德富
基于最新发布的青藏高原多年冻土存在性证据数据集,利用统计模型计算得到了1公里分辨率青藏高原多年冻土概率分布图。该图考虑了气温、积雪和植被这三个多年冻土分布控制性因素,因此能够准确地反应青藏高原冻土的空间异质性。根据1000多个实测资料验证和与已有多年冻土图的对比结果显示,该图的整体分布精度为82.5%,卡帕系数可达到0.62,在多年冻土下界表现出了更好的分类效果。结果显示,青藏高原多年冻土区面积约为1.54 (1.35–1.66) 百万平方公里, 约占陆地面积的 60.7 (54.5– 65.2)% 。多年冻土面积 约为 1.17 (0.95–1.35)百万平方公里,约占46 (37.3–53.0)%。
曹斌
数据内容:本数据集包含3种分辨率(0.25度、0.75度和2度)青藏高原多年平均月温度递减率(单位:℃/m)网格数据 数据来源及加工方法:基于高程标准差和相关性阈值动态检测不同分辨率网格内MODIS地温-海拔样本的有效性来获得局部可靠的温度递减率 数据质量描述:基于青藏高原113个站点的1980-2014年间日平均气温观测,对ERA-Interim气温数据应用0.75度气温递减率产品进行日平均气温的空间降尺度,使其验证误差(均方根误差)由~4℃降低到~2℃。 数据应用成果及前景:该数据集可应用于多种再分析资料的气温降尺度。
张凡, 张宏波
本数据集是建立在青藏高原基础上的高原土壤水分和土壤温度观测数据,用于量化粗分辨率卫星和土壤水分和土壤温度模型产物的不确定性。青藏高原土壤温湿度观测数据(Tibet-Obs)由四个区域尺度的原位参考网络组成,包括寒冷半干旱气候的那曲网络,寒冷潮湿气候的玛曲网络和寒冷干旱的阿里网络,以及帕里网络。这些网络提供了对青藏高原不同气候和地表水文气象条件的代表性覆盖。 - 时间分辨率:逐时 - 空间分辨率:点测量 - 测量精度:土壤水分,0.00001;土壤温度,0.1℃;数据集尺寸:标称深度为5,10,20,40和80厘米的土壤水分和温度统计值 - 单位:土壤水分,cm ^ 3 cm ^ -3; 土壤温度, ℃
Bob Su, 阳坤
本数据集来源于论文: Yao, T., Thompson, L., & Yang, W. (2012). Different glacier status with atmospheric circulations in tibetan plateau and surroundings. Nature Climate Change, 1580, 1-5.,数据整理自论文内Supplementary information中的表格数据。 此论文通过对82条冰川退缩、7090条冰川面积减少和15条冰川质量平衡变化的调查,总结了近30年来的冰川状况。 数据集包含8个数据表,数据表名称和内容分别为: Data list:数据列表; t1:Distribution of Glaciers in the TP and surroundings(青藏高原及周边地区冰川分布面积); t2:Data and method for analyzing glacial area reduction in each basin(分析各流域冰川面积减少的数据和方法列表); t3:Glacial area reduction during the past three decades from remote sensing images in the TP and surroundings(基于遥感影像得出的青藏高原及周边地区过去30年中冰川面积减少情况); t4:Glacial length fluctuationin the TP and surroundings in the past three decades(青藏高原及周边地区过去30年中冰川长度波动数据); t5:Detailed information on the glaciers for recent mass balance measurement in the TP and surroundings(青藏高原及周边地区近年来冰川质量平衡测量方法的详细信息); t6:Recent annual mass balances in different regions in the TP(青藏高原不同区域近年来每年质量平衡数据); t7:Mass balance of Long-time series for the Qiyi, Xiaodongkemadi and Kangwure Glaciers in the TP(青藏高原七一冰川,小冬克玛底冰川和抗物热冰川质量平衡长时间序列数据)。 数据详细信息参见附件:Supplementary information.pdf,Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings.pdf。
姚檀栋
1)数据内容包含青藏高原地区1992年、2005年、2015年三期土壤侵蚀强度栅格数据,空间分辨率为300米。2)采用中国土壤侵蚀预报模型(CSLE)计算青藏高原4000余个调查单元的土壤侵蚀量。按土地利用对青藏高原范围进行土壤侵蚀量插值。根据《土壤侵蚀分级标准》对土壤侵蚀量进行分级,得到青藏高原土壤侵蚀强度图。3)通过三期土壤侵蚀强度数据的差异变化比较,符合实际变化规律,数据质量良好。4)土壤侵蚀强度数据对青藏高原土壤侵蚀研究和当地生态系统的可持续发展具有重要意义。属性表中代码含义:Value值1,2,3,4,5,6分别代表侵蚀强度微度、轻度、中度、强烈、极强烈、剧烈;BL代表各侵蚀强度面积占总面积的百分比。
章文波
青藏高原湖泊众多,该地区湖泊冰期物候和持续时间对区域和全球气候变化非常敏感,因此被用作气候变化研究的关键指标,特别是地球三极环境变化对比研究。但由于其自然环境恶劣,人口稀少,缺乏对湖泊冰物候的常规现场测量。利用中分辨率成像光谱仪(MODIS)归一化差雪指数(NDSI)数据,以500米的分辨率对湖泊冰进行了监测,填补了观测空白。利用传统的雪图算法对晴天条件下的湖泊日冰量和覆盖范围进行检测,利用湖泊表面条件的时空连续性,通过一系列步骤对云层覆盖条件下的湖泊日冰量和覆盖范围进行重新确定。通过时间序列分析308个大于3km2的湖泊确定为湖冰范围和覆盖的有效记录,形成每日湖冰范围和覆盖数据集,包括216个湖泊,可以进一步获取四个湖冰物候参数:开始冻结(FUS),完全冻结(FUE),开始融化(BUS),完全融化(BUE),和92个湖泊,可获取两个参数,FUS和BUE。
邱玉宝
冻土是指温度低于或等于0℃且含有冰的土体或岩体,它对温度特别敏感,其物理力学性质会随温度的变化而产生显著变化。冻土的冻胀变形和融化沉降变形是最为常见的冻土灾害,它们的发生主要是因冻土工程活动使冻土固有的温度发生变化而引起的,所以保护冻土主要也是保护冻土温度,让其维持在工程活动之前最为接近的状态。获取冻土地温的主要方法是埋设测温电缆,通过CR3000的数据采集功能获得测温电缆不同时间的阻值变化,利用标定系数和电阻值的对应关系计算出温度值。依据冻土对温度的敏感特征,地温的变化情况,能够反应气候的变化情况,也能够结合其他要素分析出人类活动对冻土的稳定性的影响机理及程度,从而来指导后期工程活动中的冻土保护措施的升级改造等。
陈继
植被调查数据是研究生态系统结构与功能必不可少的数据。藏北地区蕴含广袤的草地生态系统,主要包括高寒草甸、高寒草地、以及高寒荒漠化的草地。由于独特的地理位置以及高海拔缺氧的环境条件,在藏北高原的群落调查数据较为稀少。本课题组基于前期工作的积累,在2017年生长季对整个藏北高原15个县域开展了较为全面的植被调查。本数据集包括藏北样带上从那曲到日土县23个采样点的围栏内外的生物量数据。本数据集可用于生产力的空间分析与模型的校准工作。
张宪洲, 牛犇
降水强烈的时空变化常使得常规地基台站的降水观测不能准确把握降水的空间分布和强度变化。而卫星微波遥感可以克服此局限,实现全球尺度降水和云的观测,而且相对于红外/可见光只能反映云厚、云高等信息而言,微波能够穿透云体,利用云内降水粒子和云粒子与微波的相互作用对云、雨进行更为直接的探测。 本数据以GPM搭载的DPR双波段降水雷达获取的地表降水量为真值,以NDVI、DEM、ERA5中的土壤温/湿度为参考数据,利用GMI的多波段被动亮温数据反演青藏高原地区暖季(5月-9月)瞬时降水强度,将结果重采样至0.1°空间分辨率后累加到日。
许时光
青藏高原作为地球的第三极,春夏季作为热源对区域和全球的天气和气候有着重要的影响。为了探究高原多时间尺度热力强迫作用的时空变化特征,建立一套持续、可靠的长时间观测的观测数据为基础的高原热源(汇)数据是十分有必要的。利用中国气象局在青藏高原上80(32)个观测台站1979—2016(1960—2016)年的气象要素(地表温度、地表气温、10m 风速、 日累计降水量等)为基础计算得到感热(SH)和潜热(LH),同时利用卫星资料处理得到高原上1984—2015年的净辐射通量(RC),得到了一套通过质量控制的长期高原热源数据集。本数据集在计算地表感热通量时,考虑了总体热传输系数 的日变化特征。
胡文婷
本数据来源于全国地理信息资源目录服务系统中1:100万全国基础地理数据库,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将青藏高原作为一个整体进行了拼接融合、裁切,以便于青藏高原研究中的使用。数据现势性为2017年。 本数据集为青藏高原1:100万行政边界,包括行政国界线(National_Tibet_line)、省界(Province_Tibet),市(州)界(City_Tibet)县界图层(County_Tibet_poly)和县界线图层(County_Tibet_line)。 行政境界面图层(County_Tibet_poly)属性项名称及定义: 属性项 描述 填写实例 PAC 行政区划代码 513230 NAME 名称 县界名称 行政边界线图层(BOUL)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 630200 行政边界线图层(County_Tibet_line)属性项含义: 属性项 代码 描述 GB 630200 省级界线 GB 640200 地、市、州级行政区界 GB 650201 县级行政区界(已定)
国家基础地理信息中心
青藏高原是世界上中低纬度地区冻土面积最大的地区。目前已编制了一些多年冻土分布图,但由于资料来源有限、标准不明确、验证不充分、高质量空间数据集的缺乏,使得在TP上绘制多年冻土分布图存在较大的不确定性。 本数据集基于改进的中分辨率成像光谱仪(MODIS)地表温度(LSTs)2003-2012年1km晴空MOD11A2 (Terra MODIS)和MYD11A2(Aqua MODIS)产品(reprocessing version 5)的冻融指数及冻土顶部温度(TTOP)模型模拟了多年冻土的分布,生成了青藏高原冻土图。并通过野外地面观测、土壤含水率和容重等各种调查数据对该图进行了验证。 冻土属性主要包括:季节性冻土(Seasonally frozen ground)、多年冻土(Permafrost)、非冻土区域(Unfrozen ground)。 数据集为青藏高原冻土研究提供了更详细的冻土分布资料和基础资料。
赵林
此边界数据总集包含五种类型的边界: 1、TPBoundary_2500m:基于ETOPO5 Global Surface Relief,采用ENVI+IDL 提取青藏高原经度(65~105E),纬度(20~45N)范围内海拔高程2500米的数据。 2、TPBoundary_3000m:基于ETOPO5 Global Surface Relief,采用ENVI+IDL 提取青藏高原经度(65~105E),纬度(20~45N)范围内海拔高程3000米的数据。 3、TPBoundary_HF(high_frequency):李炳元(1987)曾对确定青藏高原范围的原则与具体界线进行了较系统的讨论,从高原地貌形成和基本特征角度,提出了依据地貌特征、高原面及其海拔高度,同时考虑山体完整性作为确定高原范围的基本原则。张镱锂(2002) 根据相关领域研究的新成果和多年野外实践,论证确定青藏高原范围和界线的原则, 结合信息技术方法对青藏高原范围与界线位置进行了精确的定位和定量分析,得出:青藏高 原在中国境内部分西起帕米尔高原,东至横断山脉,南自喜马拉雅山脉南缘,北迄昆仑山— 祁连山北侧。 2017年4月14日,中华人民共和国民政部发布《关于增补藏南地区公开使用地名(第一批)的公告》,增加了乌间岭、米拉日、曲登嘎布日、梅楚卡、白明拉山口、纳姆卡姆等6个藏南地区地名。 4、TPBoundary_new (2021):伴随青藏高原研究的深入,高原内外多学科研究程度和认识的提高,及地理大数据、地球观测科学和技术的进步,张镱锂等2021年版青藏高原范围界线数据研发基于ASTER GDEM和Google Earth 遥感影像等资料综合分析完成,该范围界线北起西昆仑山-祁连山山脉北麓,南抵喜马拉雅山等山脉南麓,南北最宽达1560 km;西自兴都库什山脉和帕米尔高原西缘,东抵横断山等山脉东缘,东西最长约3360 km;经纬度范围为25°59′30″N~40°1′0″N、67°40′37″E~104°40′57″E,总面积为308.34万km2,平均海拔约4320 m。在行政区域上,青藏高原分布于中国、印度、巴基斯坦、塔吉克斯坦、阿富汗、尼泊尔、不丹、缅甸、吉尔吉斯斯坦等9个国家。 5、TPBoundary_rectangle:根据范围Lon(63~105E) Lat(20~45N),画取长方形,数据采用经纬度投影WGS84。 青藏高原边界作为基础数据,可以为各类地学数据及科学研究青藏高原作参考依据。
张镱锂
青藏高原流域边界数据集使用2000年的航天飞机雷达地形任务收集的干涉合成孔径雷达SRTM DEM 数据、参考河流、湖泊等水系辅助数据,利用arcgis水文模型,分析、提取河网,将青藏高原划分为AmuDayra、Brahmaputra、Ganges、Hexi、Indus、Inner、Mekong、Qaidam、Salween、Tarim、Yangtze、Yellow等12个子流域。其中研究区外围边界是基于2500米等高线。
张国庆
青藏高原多源遥感合成1km积雪覆盖数据集(1995-2018)基于国家卫星气象中心的青藏高原光学仪器遥感1km积雪覆盖数据集(1989-2018)和美国雪冰中心的25km近实时逐日全球冰密集度与积雪范围NISE产品数据集(1995-2019)合成得到,覆盖时间从1995年到2018年(每年1-4月和10-12月两个时段),时间分辨率为逐日,覆盖范围为青藏高原(17°N -41°N,65°E -106°E),采用等经纬度投影,空间分辨率为0.01°×0.01°。数据集以日产品表征了卫星观测时刻的地面是否为积雪所覆盖。输入数据源为NOAA或MetOp卫星AVHRR逐日积雪覆盖产品,TERRA卫星MODIS替代AVHRR对应观测通道生成的逐日积雪覆盖产品,以及DMSP卫星SSM/I或SSMIS逐日全球冰密集度和积雪范围NISE产品。数据集合成方法:以青藏高原光学仪器遥感1km积雪覆盖产品为基础,完全信任其积雪和晴空无雪信息,对有云覆盖、无法判识、缺少卫星观测等区域,在相对高空间分辨率海陆模板的辅助下,利用NISE的陆地有效判识结果进行替换。对于部分水陆边界,因NISE产品空间分辨率较低,合成结果有可能仍存在极少量的云覆盖或者无观测数据区域。基于多年地面气象台站雪深观测资料验证表明,本数据集对晴空条件下地面有无积雪的总体判识准确率在91%以上。数据采用标准的HDF4格式存储,内部有积雪覆盖和质量码两个SDS,维度均为4100列×2400行,且文件内部有完备的属性描述。
郑照军, 曹广真
青藏高原光学仪器遥感1km积雪覆盖数据集(1989-2018)基于星载光学仪器观测数据云雪判识方法制作,覆盖时间从1989年到2018年(每年1-4月和10-12月两个时段),时间分辨率为逐日,覆盖范围为青藏高原(17°N -41°N,65°E -106°E),采用等经纬度投影,空间分辨率为0.01°×0.01°。数据集以日产品表征了卫星观测时刻晴空无云或透明薄云下的地面是否为积雪所覆盖。输入数据源为NOAA与MetOp卫星的AVHRR L1数据,以及从TERRA/MODIS对应于AVHRR通道的L1数据。产品处理方法为独立于云掩模产品的动态阈值决策树算法(DT),即算法同时判别云雪,且其云检测强调保留雪信息,特别是透明卷云下的雪。DT算法针对不同情况,考虑了多种判识手段,如水云上的冰云,森林和沙地的积雪,薄雪或融雪等;根据地表类型、DEM和季节设定动态阈值;采用多种质量控制手段,如在重度气溶胶或烟尘覆盖的低纬度森林中剔除伪雪,参考最大月雪线和最小雪面亮度温度剔除伪雪;优化不同种类型云雪和晴空无雪陆地的判识流程。DT算法在正常情况下能区分大部分云雪,但会低估10月份青藏高原的积雪。基于多年地面气象台站雪深观测资料验证表明,本数据集对晴空条件下地面有无积雪的总体判识准确率在95%以上。数据采用标准的HDF4格式存储,内部有积雪覆盖和质量码两个SDS,维度均为4100列×2400行,且文件内部有完备的属性描述。
郑照军, 除多
湖泊的形成与消失、扩张与收缩对生态环境演化和社会经济发展都有重要影响。由于受气候、生态环境和人类活动等因素的综合影响,湖泊水域范围的变化速度快、幅度大,对观测的频率和分布都有很高的要求。近几十年以来,卫星遥感技术以其快速、覆盖面广、成本低廉等优点,为较大区域的湖泊动态监测提供了重要数据基础。针对大范围、高精度、长时间序列的湖泊变化分析对遥感数据时空分辨率的需求,本数据集基于 Landsat 卫星数据的自动湖泊提取方法(Feng et al., 2015),利用 2000 年以来的 Landsat 多颗卫星的观测数据,收集了2000 年以来的云量小于 80%的所有Landsat 数据,获得共 96278 景影像(约 25T 数据量),结合高性能数据存储和处理能力,提取了青藏高原和中亚地区 2000-2015 年湖泊分布记录,形成了时空一致的逐月水域范围数据集。利用分层随机采样采集样点,通过人工解译,获取能够代表不同时空分布的验证样点。评价结果表明:研究区时间序列水体数据总体精度为 99.45%(±0.59),水体用户精度(错分)为 85.37% (±3.74),制图精度(漏分)为 98.17%(±1.05)。
冯敏, 车向红
青藏高原积雪面积长时间序列数据集来源于MODIS 005版本和IMS数据集的融合,采用插值去云算法进行去云处理后得到逐日积雪面积无云产品。投影为经纬度,空间分辨率0.005 度(约500m),时间从2003.1.1-2014.12.31长时间序列,每个文件为当日的积雪面积比例结果,数值为0-100(%),为ENVI标准文件,命名规则为:ims_mts_YYYYDDD.tif,其中YYYY代表年,ddd代表儒略日(001-365/366)。文件可直接用ENVI或者ARCMAP等软件打开察看。 文件说明:200 积雪、100 湖冰、25 陆地、37 海洋
郝晓华
青藏高原(TP)在春季和夏季作为一个巨大的高架式地表和大气热源,对区域和全球气候和气候具有重要影响。为了探讨TP的热强迫效应的多尺度时间变化,制备了青藏高原大气热源/汇数据集,作为计算气柱热收支的定量分析工具。 大气热源/汇数据集包含三个变量:地表感热通量SH、潜热释放LH和净辐射通量NR。 基于中国气象局(CMA)1979-2016年80(32)气象站6-h的常规观测数据:1.5m气温、10m地面温度和风速计算地表热通量数据,降水估算潜热释放量。用于计算净辐射通量的卫星数据集为全球能源和水循环实验地表辐射预算卫星辐射(GEWEX/SRB)和云和地球的辐射能系统(CERES/EBAF),利用GEWEX/SRB和CERES/EBAF大气表面和顶部(TOA)的短波和长波月辐射通量(short - twave and longwave radiation fluxes, TOA),通过统计方法得到1984-2015年期间的净辐射通量。
段安民
本数据集是青藏高原的部分人口指标,包含青海省和西藏自治区两个省份,以省为单元进行的数据统计,可用于青藏高原城镇化和生态环境交互胁迫中评价指标体系的构建。西藏自治区的数据集时间跨度是1995-2016,数据为常住人口数,是根据人口普查、每年的人口变动抽样调查推算数。除总人口数,还分别按照性别和城乡对数据进行了统计;青海省数据集时间跨度是从1952-2015,统计了常住人口、出生、死亡和自然增加四个方面的指标。所有数据均来自统计年鉴。
杜云艳
本数据集是青藏高原的部分经济指标,包含青海省和西藏自治区两个省份,以省为单元进行的数据统计,可用于青藏高原城镇化和生态环境交互胁迫中评价指标体系的构建。西藏自治区的数据集时间跨度是1951-2016包含7个指标,分别是地区总产值,第一、第二、第三产业以及工业和建筑业,最后还包括人均地区生产总值;青海省数据集时间跨度是从1952-2015,除上述七个指标外还多出农林牧渔业这一指标。所有数据均来自统计年鉴,数据是按当年价格计算,并且依据第二次经济普查资料,对2005-2008年地区生产总值进行了修订。
杜云艳
本数据集是2010年青藏高原地区的土地覆被数据,数据为栅格TIFF格式,空间分辨率为300米,包含耕地、林地、草地、水体、城市用地等22个大类,可用于青藏高原城镇化与生态环境交互胁迫的地理本底研究。该数据来自欧空局CCI-LC项目生产的土地覆被数据产品。该数据集采用了WGS84的地理坐标系统,有22个大类。数据的生产融合多种卫星数据资料,包括MERIS FR/RR,AVHRR,SPOT-VGT,PROBA-V等。经验证,该数据集的总体精度在70%以上,当然精度会在不同的地区和覆被类型上存在差异。
杜云艳
该数据集是中国科学院西北高原生物研究所调查的三江源国家公园植物采集布位点信息。该数据集时间范围是2008年至2017年,调查范围是三江源国家公园,调查内容包括采集日期、编号、科、属、种、调查日期、采集地点、采集人、经度、纬度、海拔、生境、鉴定人等信息。对国家公园的三个园区分别进行了调查,在长江源园区调查了24个科56个属的88个种的植被,总共116条记录;在黄河源园区调查了26个科64个属110个种的植被,总共159条记录;在澜沧江源园区调查了12个科22个属30个种的植被,总共33条记录。
高庆波
净初级生产力(NPP)数据基于CASA模型生产,数据内容为三江源地区2010-2015年250米分辨率逐月NPP数据集。净初级生产力定义:绿色植物单位面积、单位时间内所累积的有机物数量。 单位:0.01gC/m²/月。Monthly和Yearly NPP分别表示逐月和逐年NPP。 投影信息: Albers 等积圆锥投影 中央经线:105度 第一割线:25度 第一割线:47度 坐标西偏:4000000 meter
朱伟伟
该数据集包含青藏高原1970s,1990,2000,2010年份大于1平方公里湖泊矢量数据。 湖泊水体边界根据Landsat MSS, TM, ETM+等影像目视解译而来。 数据类型为矢量数据,属性字段包括Area (km²)。 投影坐标系为Albers Conical Equal Area。 主要用于青藏高原湖泊、水文与气象变化研究。
张国庆
本数据集包含青海近50年的自然灾害信息,包括干旱、洪灾、冰雹、连阴雨、雪灾、寒潮和强降温、低温冻害、大风沙尘暴、虫灾、鼠灾、地质灾害等自然灾害产生的时间地点及所造成的后果。 青海省地处青藏高原东北部,总面积72 万平方千米。境内河流纵横,冰川广布,湖泊众多,因中华民族的两条母亲河长江、黄河及著名国际河流澜沧江发源于此而素有"中华水塔"之称;全省有可利用草地33.5 万平方千米,天然草场面积仅次于内蒙古、西藏和新疆而居全国第四位,草场类型多样,草地资源十分丰富,拥有青藏高原独特气候条件下生长发育的、并对高原生态环境特征具有较强代表性的维管束植物113 科、564 属、2100 种左右。青海省作为青藏高原的主体部分,是我国生物物种形成、演化的中心之一,也是国际科技界瞩目的研究气候和生态环境变化的敏感区和脆弱带。青海境内地形、地貌复杂,高山、谷地、盆地交错,多年积雪、冰川、戈壁、沙漠、草原等广有分布。复杂的地形条件,高峻的海拔高度和严酷的气候条件决定了青海是一个气象灾害十分频繁的省份。其主要的气象灾害有干旱、洪灾、冰雹、连阴雨、雪灾、寒潮和强降温、低温冻害、大风沙尘暴等。 数据摘录自《中国气象灾害大典·青海卷》,属于人工录入总结校对。
青海省统计局
基于MODIS 2000年至2018年生长季平均的NDVI(空间分辨率250m),利用Mann-Kendall趋势检测方法,计算了NDVI的变化趋势。对三江源国家公园的三个园区都进行了计算(CJYYQ:长江源园区;HHYYQ:黄河源园区;LCJYYQ:澜沧江源园区)。CJYYQ_NDVI_trend_2000_2018_ok.tif:长江源园区NDVI变化趋势。CJYYQ_NDVI_trend_2000_2018_ok_significant.tif:长江源园区NDVI变化趋势,剔除了不显著(p>0.05)的区域。CJYYQ_gs_avg_NDVI_2000.tif:长江源园区2000年生长季平均NDVI。单位为NDVI变化每年。
王旭峰
该数据集是中国科学院西北高原生物研究所在三江源国家公园野生动物多样性本底调查过程获得的野生动物分布位点信息。该数据集时间范围是2017年,调查范围是三江源国家公园,调查物种包括藏野驴(Equus kiang)、狼(Canis lupus)、赤狐(Vulpes vulpes)、马鹿(Cervus elaphus)、雀鹰(Accipiter nisus)、红腹红尾鸲(Phoenicurus erythrogastrus)、豹猫(Prionailurus bengalensis)、大鵟(Buteo hemilasius)、藏原羚(Procapra picticaudata)、藏雪鸡(Tetraogallus tibetanus)、高原山鹑(Perdix hodgsoniae)、猎隼(Falco cherrug)等多种珍稀野生动物。
张同作
本数据集包含三江源国家公园内各个县的社区情况统计表,具体内容包括: 表一包括:行政村个数、自然村个数、户数、人口数、农村劳动力人数、一二三产业总值、人均纯收入、家畜数量; 表二包括:人口民族组成(各名族人口数)、教育的相关统计(中小学个数及学生人数)、卫生相关的统计(医院、卫生室以及医护人员个数)、人口受教育水平的统计(不同教育程度的人数); 表三包括:草地(草地总面积、可利用草场面积、中度以上退化面积、草原植被覆盖度)、林地(总面积、乔木林面积、灌木林面积和疏林地面积)、水域(总面积、河流面积、湖泊面积、冰川面积、雪山面积和湿地面积)。 总共设计四个县:玛多、曲麻莱、杂多和治多县。该数据来自政府部门的统计数据。
国家统计局
本数据集为青藏高原黄河源区2015年逐像素年内最大植被覆盖度空间分布图,该区域的面积约为4.4万平方公里。此数据是基于2015年MODIS(空间分辨率250米) 和Landsat-8 OLI(空间分辨率30米)植被生长季(5月初-9月末)的时间序列影像,并利用最大值合成方法、像元二分模型和时间插值等方式获得。植被覆盖度空间分布图的空间分辨率为30米,采用WGS 1984 UTM 投影,数据格式为grid格式。
王广军
青藏高原作为亚洲“水塔”为亚洲主要河流提供水资源。由生物质和化石燃料燃烧排放的BC气溶胶对辐射具有极强的吸收作用,进而对地球系统的能量收支和分布具有重要的影响,是气候环境变化不可忽视的影响因子。青藏高原周边地区排放的黑碳气溶胶经大气环流可被传输至高原内部,并沉降到雪冰表面,对降水和冰川物质平衡产生重要影响。分别在青藏高原5个台站架设黑碳仪,在线测量大气黑碳含量。这对评估黑碳对青藏高原的气候环境影响和大气污染物的跨境传输提供数据基础。
王茉
青藏高原在中国境内的部分涉及西藏、青海、新疆、云南、甘肃、四川六个省份,包括了西藏、青海全境,以及新疆、云南、甘肃、四川的部分地区。水土资源匹配研究旨在揭示一定区域尺度水资源和土地资源时空分配的均衡状况与丰缺程度。区域水资源与耕地资源分配的一致性水平越高,其匹配程度就越高,农业生产的基础条件就越优越。采用单位耕地面积的广义农业水资源量测度方法来反映研究区农业生产的水资源供给量和耕地资源空间适宜性的量比关系。 数据集的Excel文件中包含青藏高原在中国境内的市级行政区2008-2015年的广义农业水土资源匹配系数数据,矢量数据为2004年青藏高原在中国境内的市级行政区矢量边界数据,栅格数据像元值即所在地区当年广义农业水土资源匹配系数。
董前进, 董凌霄
采用WRF模式制备的青藏高原近地表大气驱动和地表状态数据集,时间范围:2000-2010,空间范围:25-40 ºN,75-105 ºE,时间分辨率:逐时,空间分辨率:10 km,格点数为150*300。 总计有33个变量,其中包含的近地表大气变量11个: 地面上2m高度的温度、 地面上2m高度的比湿、地面气压、地面上10m风场的纬向分量、地面上10m风场的经向分量、固体降水比例、累积的积云对流降水、累积的格点降水、地表处的向下短波辐射通量、地表处的向下长波辐射通量、累计的潜在蒸发。 包含的地表状态变量有19个:各层土壤温度、各层土壤湿度、 各层土壤液态水含量、雪相态改变的热通量、土壤底部温度、地表径流、地下径流、植被比例、地面热通量、雪水当量、实际雪厚、雪密度、冠层中的水、地表温度、反照率、背景反照率、更低边界处的土壤温度、地表面处向上的热量通量(感热通量)、地表面处向上的水量通量(感热通量)。 其他变量3个:经度、纬度和行星边界层高度。
潘小多
1) 数据内容(包含的要素及意义): 大气柱总含水量/可降水量、 儒略日Julian Day、经纬度和海拔高度; 2) 数据来源及加工方法: ECMWF-interm逐月再分析资料集 monthly mean analysis; 3) 数据质量描述:时间分辨率为逐月,空间分辨率:0.7°*0.7°; 4) 数据应用成果及前景:数据集给出了高原空中大气水资源的空间情况,用于分析高原空中水汽的时空变化及对周边地区降水的影响。
阎虹如
青藏高原逐日无云MODIS积雪面积比例数据集(2000-2015)是在MODIS逐日积雪产品—MOD10A1的基础上,采用一种基于三次样条函数插值的去云算法进行去云处理后得到。 该数据集采用UTM(横轴等角割圆柱)投影方式,空间分辨率500m,提供逐日的青藏高原地区积雪面积比例(Fractional Snow Cover-FSC)结果。数据集为逐日文件,从2000年2月24日到2015年12月31日。每个文件为当日的积雪面积比例结果,数值为0-100(%),为ENVI标准文件,命名规则为:YYYYddd_FSC_0.5km.img,其中YYYY代表年,ddd代表儒略日(001-365/366)。文件可直接用ENVI或者ARCMAP等软件打开察看。 进行去云处理的原始MODIS积雪数据产品来源于由美国国家雪冰数据中心(NSIDC)处理的MOD10A1产品,这一数据集为hdf格式,采用sinusoidal投影。 青藏高原逐日无云MODIS积雪面积比例数据集(2000-2015)属性由该数据集的时空分辨率、投影信息、数据格式组成。 时空分辨率:时间分辨率为逐日,空间分辨率为500m,经度范围为72.8°~106.3°E,纬度为25.0°~40.9°N。 投影信息:UTM(横轴等角割圆柱)投影。 数据格式:ENVI标准格式。文件命名规则:“YYYYddd”+“_FSC_0.5km”+“.img”,其中YYYY代表年,ddd代表儒略日(001-365/366),其中“.img”是为了方便在ARCMAP等软件打开察看而添加的文件后缀。例如2000055_FSC_0.5km.img代表2000年第55天的结果。其中该数据集的ENVI文件是由头文件和主体内容构成。头文件包括行数、列数、波段数、文件类型、数据类型、数据记录格式、和投影信息等;以2000055_FSC_0.5km.img 文件为例,其头文件信息如下: ENVI description = { ENVI File, Created [Sat Apr 27 18:40:03 2013]} samples = 5760 lines = 3300 bands = 1 header offset = 0 file type = ENVI Standard data type = 1 :代表byte型 interleave = bsq :数据记录格式为BSQ sensor type = Unknown byte order = 0 map info = {UTM, 1.500, 1.500, -711320.359, 4526650.881, 5.0000000000e+002, 5.0000000000e+002, 45, North, WGS-84, units=Meters} coordinate system string = {PROJCS["UTM_Zone_45N",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",87.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]} wavelength units = Unknown,band names = {2000055}
唐志光, 王建
本数据集包含自1951年1月至2006年12月,青藏高原地区历年各季度和历年各月份的温度距平序列。依照气候距平法(CAM),基于《中国均一化历史气温数据集(1951-2004)1.0版》与2005-2006逐日平均气温资料,对青藏高原及其邻近区域共123个站点的逐月平均气温网格化,进而以面积加权法建立了高原1951-2006年逐月平均气温距平序列。其中,为最大限度地利用观测资料,着重探讨了利用参考站订正短序列气温资料气候标准值的方法。参考文献:任雨,张雪芹,彭莉莉.青藏高原1951-2006年气温距平序列的建立与分析.高原气象,2010. 《中国均一化历史气温数据集(1951-2004)1.0版》与2005-2006逐日平均气温资料,符合相关国家标准。 年各月温度距平数据表共有五个字段 字段1:年 字段2:月份 字段3:网格数 参加计算的网格数 字段4:站点数 参加计算的站点数 字段5:月温度距平 单位 ℃ 历年及各季温度距平数据表共有五个字段 字段1:年 字段2:季度 字段3:网格数 参加计算的网格数 字段4:站点数 解释:参加计算的站点数 字段5:温距平 ℃ 其中,季度字段中 1. 如果为空值,表示为年温度距平 2. DJF:冬季(上年12月至当年2月)温度距平值 ℃ 3. MAM:春季(3-5月)温度距平值 ℃ 4. JJA:夏季(6-8月)温度距平值 ℃ 5. SON:秋季(9-11月)温度距平值 ℃ 数据精度:月均温距平到小数点后三位,年均温与季均温距平到小数点后两位。
刘林山
数据包含青藏高原地区的土壤有机质数据,空间分辨率为1km*1km,时间覆盖范围为1979-1985年。数据来源是基于第二次土壤普查数据生成的土壤碳含量。土壤有机质主要来源于植物、动物及微生物残体,其中高等植物为主要来源。原始土壤中最早出现在母质中的有机体是微生物。随着生物的进化和成土过程的发展,动物、植物残体及其分泌物就成为土壤有机质的基本来源。数据对于分析青藏高原的生态环境以及衡量区域土壤特征具有重要意义。
方华军
光合有效辐射吸收系数光合有效辐射分量是重要的生物物理参数,是生态系统功能模型、作物生长模型、净初级生产力模型、大气模型、生物地球化学模型、生态模型等的重要陆地特征参量,是估算植被生物量的理想参数。 数据集包含青藏高原地区的光合有效辐射吸收系数数据,空间分辨率为500m,时间分辨率为8d,时间覆盖范围为2000年、2005年、2010年、2015年。数据来源为NASA网站MODIS LAI/FPAR产品数据MOD15A2H(C6)。 数据对于分析青藏高原的植被生态环境有重要意义。
方华军, Ranga Myneni
本数据集为青藏高原土壤持久性有机污染物(POPs)的浓度数据,包括有机氯农药(OCPs)、多氯联苯(PCBs)、多溴联苯醚(PBDEs)和多环芳烃(PAHs)。本研究于 2007 年在 8 个土壤分区共采集土壤样品 40个。土壤样品主要在远离道路、居民区、农田等受人类活动影响的地区采集。采样方法是:利用不锈钢铲采集 0-5cm 表层土壤样品,在每个采样点 100 m2范围内各采集 5 个土壤样品(中心和每个角各一个样品)并混合成为一个样品。为减少可能的污染,所有土壤样品都用两层铝箔纸包裹,并放置于两层自封袋内密封保存。所有样品的分析工作均在中国科学院青藏高原环境变化与地表过程重点实验室完成。样品前处理步骤包括索式提取、硅胶-氧化铝柱净化、过GPC柱去除大分子杂质、浓缩定容等步骤。分析测试仪器为热电公司生产的气相色谱/离子阱质谱(Finnigan-TRACE GC/PolarisQ),分离OCPs和PCBs的色谱柱为CP-Sil 8CB毛细柱(50 m×0.25 mm×0.25 μm),分离PAHs的色谱柱为DB-5MS毛细柱(60 m×0.25 mm×0.25 μm)。实验过程中设置了实验流程空白。所有化合物实验室空白都没有检测到,这说明样品的分析过程中并没有造成污染。PAHs实验室样品的回收率在58-92%之间,OCPs的实验室样品的回收率在53-130%之间,样品浓度未使用回收率进行校正。
王小萍
在众多反映气候环境变化的指标中,冰芯稳定同位素指标是冰芯记录研究中必不可少的参数,是恢复过去气候变化最可靠的手段和最有效的途径之一。冰芯积累量是冰川上降水量的直接记录,而且高分辨率冰芯记录保证了降水记录的连续性。因此,冰芯记录提供了一种恢复降水量变化的有效手段。从青藏高原钻取的冰芯同位素和积累量可用来重建温度和降水变化,是很好的气候环境记录。本数据集提供了青藏高原冰芯同位素和积累量数据,为研究青藏高原的气候变化提供数据支撑。
徐柏青
青藏高原地区属于高原山地气候,气温及其季节变化一直是全球气候变化研究的热点之一。 数据包含青藏高原地区的气温数据,空间分辨率为1km*1km,时间分辨率为月、年,时间覆盖范围为2000年、2005年、2010年、2015年。数据通过对青藏高原地区国家气象站数据进行Kring插值得到。 数据可用于分析青藏高原的气温的时间空间分布情况,此外数据还可用于分析青藏高原的气温随时间变化的规律,对青藏高原的生态环境研究有重要意义。
方华军
数据包含青藏高原地区的夜间灯光数据,空间分辨率为1km*1km,时间分辨率为5年,时间覆盖范围为2000年、2005年、2010年。数据来自Version 4 DMSP-OLS产品,DMSP/OLS传感器独辟蹊径,采集的是夜间灯光、火光等产生的辐射信号。DMSP/OLS传感器在夜间工作,能探测到城市灯光甚至小规模居民地、车流等发出的低强度灯光,并使之区别于黑暗的乡村背景。因此,DMSP/OLS夜间灯光影像可作为人类活动的表征,成为了人类活动监测研究的良好数据源。
方华军
1、数据内容:气温、相对湿度、降水、气压、风速、平均总辐射、总净辐射值及水汽压日平均数据。 2、数据来源及加工方法:由美国campel高山型自动气象站观测,其中空气温湿度传感器型号HMP155A;风速风向仪型号:05103-45;净辐射仪:CNR 4 Net Radiometer four component;大气压力传感器:CS106;雨量筒:TE525MM。自动气象站每隔10分钟自动采集一次数据,每日采集完自动统计计算得出日均值气象数据。 3、数据质量描述:数据自动连续获取。 4、数据应用成果及前景:该气象站设置在冰川中部,气象数据可为模拟预测未来气候变化背景下海洋型冰川变化对全球气候变化的响应研究提供了数据保证。
刘婧
青藏高原生态资产评估遥感反演基础数据集包括了青藏高原自2000年起年度的植被覆盖度(FVC),净初级生产力(NPP)和叶面积指数(LAI)等基于遥感反演的生态参数,以供区域尺度生态资产评估研究使用。其中植被覆盖度数据以MODIS NDVI数据为主体,基于像元二分模型,利用多尺度遥感影像,结合植被群落类型、分布特征等高精度遥感参数,发展植被覆盖度模型,用混合像元分解法构建。精度验证估测值与实测值的RMSE为0.21,在样本值0-0.5之间均存在一定的高估情况。
刘文俊
活动层是多年冻土的主要特征之一,暖季融化,冷季冻结,呈季节性变化,其中活动层地温变化剧烈程度将直接影响冻土温度的变化,从而影响冻土稳定性。该数据集的监测站点位于92°E,35°N,海拔4600米,监测场地地势平坦,植被类型为高寒草甸,监测仪器为DT500系列数据采集仪,分别在地表以下10cm、20cm、40cm、80cm、160cm的5个深度上进行地温监测,该数据集的时间间隔为1天,是通过30分钟一次的数据的平均值,监测期间数据稳定、连续。通过结合土壤热通量和土壤水分等资料开展活动层的热变化过程以及变化机理等科学课题
青藏高原作为亚洲“水塔”为亚洲主要河流提供水资源。由生物质和化石燃料燃烧排放的黑碳(Black carbon,BC)气溶胶对辐射具有极强的吸收作用,进而对地球系统的能量收支和分布具有重要的影响,是气候环境变化不可忽视的影响因子。青藏高原周边地区排放的黑碳气溶胶经大气环流可被传输至高原内部,并沉降到雪冰表面,对降水和冰川物质平衡产生重要影响。在青藏高原通过钻取冰芯样品、采集表雪样品,测量其中的黑碳含量,恢复历史记录和空间分布,为对评估黑碳对青藏高原的气候环境影响和大气污染物的跨境传输提供数据基础。
徐柏青
该数据集是NOAA的 Advanced Very High Resolution Radiometer (AVHRR)传感器获取的长时间序列的NDVI数据。该数据集时间范围是1982年至2015年。为了去除NDVI数据中的噪声,进行了最大化合成、多传感器对比纠正。每半个月合成一幅NDVI影像。该数据集在植被长期变化趋势分析中被广泛应用。该数据集是从全球数据集中将三江源部分裁切出来,以便单独开展三江源地区的研究分析。 本数据集数据格式为geotiff,空间分辨率为8km,时间分辨率为2周,时间范围为1982年至2015年。数据转系系数为10000, NDVI = ND/10000。
NOAA
本数据来源于全国地理信息资源目录服务系统系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2015年。 本数据集为三江源地区1:25万水系数据,包括水系面(HYDA)、水系线(HYDL)和水系点(HYDP)三个图层。水系面(HYDA)包括湖泊、水库、双线河流和沟渠等;水系线(HYDL)包括单线河流、沟渠、河流结构线等;水系点(HYDP)包括泉、井等。 HYDA属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 HYDC 水系名称代码 KJ2103 NAME 名称 黑河 WQL 水质 淡 PERIOD 时令月份 7-9 TYPE 类型 通行 HYDL属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 HYDC 水系名称代码 KJ2103 NAME 名称 黑河 PERIOD 时令月份 7-9 HYDP属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 NAME 名称 不冻泉 TYPE 类型 淡 ANGLE 角度 75 水系数据GB码及其含义: 属性项 代码 描述 GB 210101 地面河流 210200 时令河 210300 干涸河 230101 湖泊 230102 池塘 230200 时令湖 230300 干涸湖 240101 建成水库 240102 建成中水库
全国地理信息资源目录服务系统
该数据集是MODIS的植被指数数据(MOD13Q1),将三江源区域进行了提取,以便单独开展三江源地区的研究分析。MOD13Q1是16天合成的植被指数,包含归一化植被指数(NDVI)和增强型植被指数(EVI)。三江源的空间范围覆盖两景MODIS文件(h25v05和h26v05)。数据存储格式为hdf,每个文件中包含12个波段:归一化植被指数(NDVI)、增强型植被指数(EVI)、数据质量(VI Quality)、红波段反射率(red reflectance)、近红外波段反射率(NIR reflectance)、蓝波段反射率(blue reflectance)、中红外波段反射率(MIR reflectance)、观测天顶角(view zenith angle)、太阳天顶角(sun zenith angle)、相对方位角(relative azimuth angle)、合成的时间(composite day of the year)和象元可靠性(pixel reliability). 本数据集数据格式为hdf,空间分辨率250m,时间分辨率是16天,时间范围:2000年2月至2018年10月。
Kamel Didan*, Armando Barreto Munoz, Ramon Solano, Alfredo Huete
本数据来源于全国地理信息资源目录服务系统系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2017年。 本数据集为三江源地区1:100万水系数据,包括水系面(HYDA)、水系线(HYDL)和水系点(HYDP)三个图层。水系面(HYDA)包括湖泊、水库、双线河流等;水系线(HYDL)包括单线河流、沟渠、河流结构线等;水系点(HYDP)包括泉、井等。 HYDA属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 HYDC 水系名称代码 KJ2103 NAME 名称 黑河 WQL 水质 淡 PERIOD 时令月份 7-9 TYPE 类型 通行 HYDL属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 HYDC 水系名称代码 KJ2103 NAME 名称 黑河 PERIOD 时令月份 7-9 HYDP属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 NAME 名称 不冻泉 TYPE 类型 淡 ANGLE 角度 75 水系数据GB码及其含义: 属性项 代码 描述 GB 210101 地面河流 210200 时令河 210300 干涸河 230101 湖泊 230102 池塘 230200 时令湖 230300 干涸湖 240101 建成水库 240102 建成中水库
全国地理信息资源目录服务系统
本数据来源于全国地理信息资源目录服务系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2015年。 本数据集为三江源地区1:25万交通数据,包括公路(LRDL)和铁路(LRRL)两个图层。公路(LRDL)包括国道、省道、县道、乡道和其它公路等;铁路(LRRL)包括标准轨铁路、窄轨铁路、地铁和轻轨等。 公路(LRDL)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 420301 RN 道路编号 X828 NAME 道路名称 着晓三叉口-尕拉山顶叉口 RTEG 道路等级 四级 TYPE 道路类型 高架 公路属性项含义: 属性项 代码 描述 GB 420101 国道 420102 建筑中国道 420201 省道 420102 建筑中省道 420301 县道 420302 建筑中县道 420400 乡道 420800 机耕路 440100 简易公路 440200 乡村路 440300 小路 铁路(LRRL)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 410101 RN 铁路编号 0907 NAME 铁路名称 青藏铁路 TYPE 铁路类型 高架
全国地理信息资源目录服务系统
本数据来源于全国地理信息资源目录服务系统中1:100万全国基础地理数据库,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2017年。 本数据集为三江源地区1:100万行政边界,包括行政边界面图层(BOUA)和行政边界线图层(BOUL)。 政境界面图层(BOUA)属性项名称及定义: 属性项 描述 填写实例 PAC 行政区划代码 513230 NAME 名称 壤塘县 行政边界线图层(BOUL)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 630200 行政边界线图层(BOUL)属性项含义: 属性项 代码 描述 GB 630200 省级界线 GB 640200 地、市、州级行政区界 GB 650201 县级行政区界(已定)
全国地理信息资源目录服务系统
本数据来源于全国地理信息资源目录服务系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2015年。 本数据集为三江源地区1:25万自然地名数据(AANP),包括交通要素名、纪念地和古迹名、山名、水系名、海洋地域名、自然地域名等。 自然地名数据(AANP)属性项名称及定义: 属性项 描述 填写实例 NAME 名称 拉木赛拉保尼洼 PINYIN 汉语拼音 Lamusailabaoniwa CLASS 地名分类码 HB
全国地理信息资源目录服务系统
该数据集是SPOT卫星上的VEGETATION传感器获取的长时间序列的NDVI数据。该数据集时间范围是1998年5月至2013年。为了去除NDVI数据中的噪声,进行了最大化合成。每10天合成一幅NDVI影像。该数据集是从全球数据集中将三江源部分裁切出来,以便单独开展三江源地区的研究分析。 本数据集数据格式为geotiff,空间分辨率1km,时间分辨率是10天,时间范围:1998年5月至2013年12月。
Image Processing Centre for SPOT-VGT
本数据来源于全国地理信息资源目录服务系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2015年。 本数据集为三江源地区1:25万居民点数据集,包括居民地面(RESA)和居民地点(RESP)两个图层, 居民地面(RESA)主要指面状居民地轮廓;居民地点(RESP),包括普通房屋、棚房、窑洞、蒙古包、放牧点等。 居民地面(RESA)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 310200 居民地点(RESP)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 310200 ANGLE 角度 67
全国地理信息资源目录服务系统
本数据来源于全国地理信息资源目录服务系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2017年。 本数据集为三江源地区1:100万居民地地名数据(AGNP),包括包括各级行政地名和城乡居民地名称等。 居民地地名数据(AGNP)属性项名称及定义: 属性项 描述 填写实例 CLASS 地名分类码 AK NAME 名称 泉曲村 PINYIN 汉语拼音 Quanqucun GNID 地名编码 632524000000 XZNAME 所属乡镇名 子科滩镇
全国地理信息资源目录服务系统
本数据来源于全国地理信息资源目录服务系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2017年。 本数据集为三江源地区1:100万自然地名数据(AANP),包括交通要素名、纪念地和古迹名、山名、水系名、海洋地域名、自然地域名等。 自然地名数据(AANP)属性项名称及定义: 属性项 描述 填写实例 CLASS 地名分类码 如 HB NAME 名称 如 拉木赛拉保尼洼 PINYIN 汉语拼音 如 Lamusailabaoniwa
全国地理信息资源目录服务系统
本数据来源于全国地理信息资源目录服务系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2017年。 本数据集为1:100万三江源地区交通数据,包括公路(LRDL)和铁路(LRRL)两个图层。公路(LRDL)包括国道、省道、县道、乡道和其它公路等;铁路(LRRL)包括标准轨铁路、窄轨铁路、地铁和轻轨等。 公路(LRDL)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 420301 RN 道路编号 X828 NAME 道路名称 着晓三叉口-尕拉山顶叉口 RTEG 道路等级 四级 TYPE 道路类型 高架 公路(LRDL)属性项含义: 属性项 代码 描述 GB 420101 国道 420102 建筑中国道 420201 省道 420102 建筑中省道 420301 县道 420302 建筑中县道 420400 乡道 420800 机耕路 440100 简易公路 440200 乡村路 440300 小路 铁路(LRRL)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 410101 RN 铁路编号 0907 NAME 铁路名称 青藏铁路 TYPE 铁路类型 高架
全国地理信息资源目录服务系统
该数据集是SeaWiFS获取的长时间序列的NDVI数据。该数据集时间范围是1997年9月至2007年。为了去除NDVI数据中的噪声,进行了最大化合成。每15天合成一幅NDVI影像。该数据集是从全球数据集中将三江源部分裁切出来,以便单独开展三江源地区的研究分析。 本数据集数据格式为geotiff,空间分辨率4km,时间分辨率是15天,时间范围:1997年第256天至2007年第365天。
Charles R. Mcclain
本数据来源于全国地理信息资源目录服务系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。为了更加方便的使用数据,将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2017年。 本数据集为三江源地区1:100万居民点数据,包括居民地面(RESA)和居民地点(RESP)两个图层, RESP 居民地(点)图层,包括普通房屋、放牧点等。 居民地面(RESA)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 310200 居民地点(RESP)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 310200 ANGLE 角度 67
全国地理信息资源目录服务系统
本数据来源于全国地理信息资源目录服务系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2015年。 本数据集为三江源地区1:25万居民地地名数据(AANP),包括各级行政地名和城乡居民地名称等。 居民地地名数据(AANP)属性项名称及定义: 属性项 描述 填写实例 NAME 名称 泉曲村 PINYIN 汉语拼音 Quanqucun CLASS 地名分类码 AK GNID 地名编码 632524000000 XZNAME 所属乡镇名 子科滩镇
全国地理信息资源目录服务系统
该数据集结合中国第二次编目数据、空间分辨率30米且云量覆盖度低于10%的landsat系列光学影像数据及SRTM等多种数据的基础上,利用ArcGIS,ENVI和Google Earth等处理软件,通过人工目视解译的方法提取冰川边界10km范围内的冰湖边界,并对解译后的数据进行统一的冰湖的类型、所属山脉、省域、流域等属性添加、质量检验与精度验证。空间分辨率30米。 由两部分组成,分别为利用冰川编目数据生成冰湖分布区矢量文件和2015年中国西部冰湖编目数据集。 为中国西部冰湖-冰川耦合关系、水资源利用与管理等相关研究的参考数据,还可以作为区域气候变化与冰冻圈等相关研究的基础数据。
王欣
青藏高原湖泊面积长时间序列数据集包含1970s至2013年364个面积大于10平方公里湖泊的面积序列数据。根据Landsat影像得来,以Landsat 10月份数据为主,每隔3年取一个数据,减少季节变化的同时,可利用数据达到最大。 数据使用NDWI水体指数提取,每个湖泊经过人工目视检查与编辑。 数据应用于青藏高原湖泊变化、湖泊水量平衡、气候变化的研究。 数据类型:矢量。 投影方式:WGS84。
张国庆
该数据集记录了阿里荒漠环境综合观测研究站,2009-2017年气象数据集,数据时间分辨率为天。包含如下基本气象参数:气温(距地面1.5米,半小时观测一次,单位:摄氏度)、相对湿度(距地面1.5米,半小时一次,单位:%)、风速(距地面1.5米,半小时一次,单位:米/秒)、风向(距地面1.5米,半小时一次,单位:度)、气压(距地面1.5米,半小时一次,单位:hPa)、降水量(24时一次,单位:毫米)、水汽压(单位:Kpa)、蒸发(单位:毫米)、向下短波辐射(单位:W/m²)、向上短波辐射(单位:W/m²) 、向下长波辐射(单位:W/m²) 、向上长波辐射(单位:W/m²) 、净辐射(单位:W/m²)、地表反照率(单位:%)。 数据采集地点:中国科学院青藏高原研究所阿里荒漠环境综合观测研究站观测场,经度:79°42'5";纬度:33°23'30";海拔:4264米。 数据从阿里站自动气象站直接下载,其中降水数据是自动雨雪量计和人工观测校正得到每天的降水量,其它均为半小时的观测值经平均得到逐日均值。 观测仪器型号:温度和湿度:HMP45C空气温湿度探头;降水:T200-B雨雪量仪传感器;风速和风向: Vaisala 05013风速风向传感器;净辐射:Kipp Zonen NR01净辐射传感器;气压:Vaisala PTB210大气压传感器。采集器型号:CR 1000,采集时间:30分钟。 本数据表是由专人根据观测记录进行加工和质量控制。严格按照仪器操作规范进行观测和数据采集,在加工生成数据表时,剔除了一些明显误差数据。
赵华标
该数据集是基于MODIS 16天合成的NDVI产品(MOD13A2 collection6)估算的三江源地区的植被生长季开始(Start of Season: SOS)和生长季结束的日期(End of Season: EOS)。分别用了两种常见的物候期估算方法,分别是基于多项式拟合的阈值提取法(文件名中有poly字符)和基于双逻辑曲线(double logistic function)拟合后的拐点提取法(文件名中有sig字符)。该数据可以用来分析植被物候期与气候变化的关系。时间范围为2001年至2014年。空间分辨率为1km。
王旭峰
该数据集是基于SPOT卫星的Vegetation传感10天合成的NDVI产品估算的三江源地区去的植被生长季开始(Start of Season: SOS)和生长季结束的日期(End of Season: EOS)。分别用了两种常见的物候期估算方法,分别是基于多项式拟合的阈值提取法(文件名中有poly字符)和基于双逻辑曲线(double logistic function)拟合后的拐点提取法(文件名中有sig字符)。该数据可以用来分析植被物候期与气候变化的关系。时间范围为1999年至2013年。空间分辨率为1km。
王旭峰
本数据集来源于MODIS 005版本和IMS数据集,进行了去云处理后融合的逐日无云积雪面积产品。取值范围:0%-100%。200:积雪;100: 湖冰;25:陆地;37:海洋。空间分辨率为0.005 度(约500m),时间范围是2002年7月5日至2014年12月31日。
郝晓华
基于青藏高原国家气象站站点数据通过PRISM模型插值生成的高原气象要素分布图,主要包括气温和降水。 青藏高原1961-1990月均温分布图(30年平均值): t1960-90_1.e00,t1960-90_2.e00,t1960-90_3.e00,t1960-90_4.e00,t1960-90_5.e00, t1960-90_6.e00,t1960-90_7.e00,t1960-90_8.e00,t1960-90_9.e00,t1960-90_10.e00, t1960-90_11.e00,t1960-90_12.e00 青藏高原1991-2020月均温分布图(30年平均值): t1991-20_1.e00,t1991-20_2.e00,t1991-20_3.e00,t1991-20_4.e00,t1991-20_5.e00, t1991-20_6.e00,t1991-20_7.e00,t1991-20_8.e00,t1991-20_9.e00,t1991-20_10.e00, t1991-20_11.e00,t1991-20_12.e00, 青藏高原1961-1990月降水分布图(30年平均值): p1960-90_1.e00,p1960-90_2.e00,p1960-90_3.e00,p1960-90_4.e00,p1960-90_5.e00, p1960-90_6.e00,p1960-90_7.e00,p1960-90_8.e00,p1960-90_9.e00,p1960-90_10.e00, p1960-90_11.e00,p1960-90_12.e00 青藏高原1991-2020月降水分布图(30年平均值): p1991-2020_1.e00,p1991-2020_2.e00,p1991-2020_3.e00,p1991-2020_4.e00,p1991-2020_5.e00, p1991-2020_6.e00,p1991-2020_7.e00,p1991-2020_8.e00,p1991-2020_9.e00,p1991-2020_10.e00, p1991-2020_11.e00,p1991-2020_12.e00, 数据时间范围分为1961-1990年、1991-2020年。 数据覆盖的空间范围为东经73°~104.95°,北纬26.5°~44.95°,空间分辨率0.05度×0.05度(经度×纬度),大地坐标投影。 名称解释: 月均温:一个月中每天的日平均气温的平均数; 月降水:一个月降水量的总和。 量纲:数据的文件格式为E00文件,DN值为1~12月的月均温平均值(×0.01℃)、月降水平均值(×0.01mm)。 数据类型:整型。 数据精度:0.05度×0.05度(经度×纬度)。 本数据原始来源为两组数据集:1)青藏高原及周边地区128个气象站自建站至2000年的月均温、月降水观测资料;2)青藏高原50×50km网格的HadRM3区域气候情景模拟数据,即1991-2020年下月平均温度、月降水模拟值。 1961-1990年,对源数据集采用PRISM(Parameter elevation Regressions on Independent Slopes Model)插值方法生成网格数据,基于站点数据对插值模型进行调参和验证。1991-2020年,对区域气候情景模拟数据以地形趋势面插值方法降尺度生成网格数据。部分源数据来自GCM模型模拟的结果:GCM模型采用Hadley Centre climate model HadCM2-SUL。 a) Mitchell JFB, Johns TC, Gregory JM, Tett SFB (1995) Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501-504. b) Johns TC, Carnell RE, Crossley JF et al. (1997) The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Climate Dynamics, 13, 103-134. 对气象数据进行空间插值采用PRISM (Parameter-elevation Regressions on Independent Slopes Model)方法: Daly,C., R.P. Neilson, and D.L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140~158. 因高原地区观测条件艰苦,基础研究数据缺乏,部分地区气象数据有缺失的现象。本数据集经调参和验证,精度尚可,但仅可做为宏观尺度气候研究的参考之用。青藏高原1961-1990月均温分布数据平均相对误差率为8.9%,青藏高原1991-2020月均温分布数据平均相对误差率为9.7%,青藏高原1961-1990月降水分布数据平均相对误差率为20.9%,青藏高原1991-2020月降水分布数据平均相对误差率为22.7%。对部分缺失数据的区域进行了插补,对明显错误的个别数值进行了修改。
周才平
该数据集是基于GIMMS 最新版本的NDVI数据集GIMMS3g version 1.0估算的三江源地区去的植被生长季开始(Start of Season: SOS)和生长季结束的日期(End of Season: EOS)。分别用了两种常见的物候期估算方法,分别是基于多项式拟合的阈值提取法(文件名中有poly字符)和基于双逻辑曲线(double logistic function)拟合后的拐点提取法(文件名中有sig字符)。该数据可以用来分析植被物候期与气候变化的关系。时间范围为1982年至2015年,空间分辨率为8km。
王旭峰
本数据包含两个数据文件,GLOBELAND30 TILES(原始数据)和TIBET_ GLOBELAND30_MOSAIC(镶嵌数据)。 原始数据下载自全球地表覆盖数据网站(GlobalLand3)(http://www.globallandcover.com),范围涵盖青藏高原及周边地区。原始数据分幅存储,为了便于用户使用数据,在分幅数据的基础上,我们使用Erdas软件对原始数据进行了拼接镶嵌。 全球地表覆盖数据(GlobalLand30)是国家863计划重点项目“全球地表覆盖遥感制图与关键技术研究”的科研成果,该数据利用美国陆地卫星影像(TM5、ETM+)和中国环境减灾卫星(HJ-1)影像数据,采用基于像素分类-对象提取-知识检核的综合方法提取而成。数据包括耕地、森林、草地、灌木、湿地、水体、苔原、人造覆盖、裸地、冰川和永久积雪10个一级地表覆盖类型,没有进行二级类型提取。在准确度评估方面,评估九种类型和超过150,000个测试样品。GlobeLand30-2010的整体精度达到80.33%。Kappa指标为0.75。 GlobeLand30数据采用WGS84坐标系,UTM投影,6度分带,参考椭球为WGS 84椭球。根据不同的纬度情况,采用2种分幅方式进行数据组织。在南北纬60°区域内,按照5°(纬度)×6°(经度)大小进行分幅;在南北纬60°至80°区域内,按照5°(纬度)×12°(经度)大小进行分幅,按照奇数6°带的中央经线进行投影。 GLOBELAND30 TILES:原始数据保留数据原貌,未进行处理。 TIBET_ GLOBELAND30_MOSAIC:使用erdas软件对原始数据进行镶嵌,参数设置使用默认值原始数据保留数据原貌,精度同下载网站。
陈军
数据集综合了纳木错多圈层综合观测研究站、珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站的大气、水文和土壤的长期监测数据。数据有三种分辨率,包括0.1秒、10分钟、30分钟、24小时不等。 野外的大气边界层塔(PBL)所使用的温湿度和气压传感器由芬兰的Vaisala公司生产,风速风向传感器由美国的MetOne公司生产,辐射传感器由美国的APPLEY公司和日本的EKO公司生产,气体分析仪由美国的Licor公司生产,土壤含水量、超声风速仪和数据采集器等由美国的CAMPBELL公司生产。定期(每年2-3次)由专业人员对观测系统进行维护,对传感器进行标定和更换,对采集的数据进行下载和整编,满足国家气象局和世界气象组织(WMO)的气象观测规范。 数据集加工方法为原始数据经过质量控制后形成时间连续序列,质量控制包括剔除曳点数据和传感器出现故障造成的系统误差。
马耀明
本数据集包含了雅鲁藏布江主要水文站径流年际变化特征值(多年平均径流量,年极值比,离差系数等),可用于研究雅鲁藏布江水文特征分析。原始数据为国家水文站数据,质量要求同国家相关标准。 空间范围:雅鲁藏布江流域干流拉孜、奴各沙、羊村、奴下等四个水文站。 本数据表共有五个字段 字段1:站名 字段2:多年平均径流量 字段3:年极值比 字段4:离差系数 字段5:资料系列长度
姚治君
本数据集包含自1982年至2006年基于生态学模式与遥感数据计算青藏高原植被净初级生产力(Net Primary Productivity,NPP)的结果。 基于遥感Advanced Very High Resolution Radiometer(AVHRR)数据和Carnegie-Ames-Stanford Approach(CASA)模型生成的青藏高原生态系统NPP(1982-2006),基于第二次土壤普查数据生成的土壤碳含量,以及基于High Resolution Biosphere Model(HRBM)模型生成的生物量碳数据。 青藏高原森林生态系统NPP(1982-2006年): npp_forest82.e00,npp_forest83.e00,npp_forest84.e00,npp_forest85.e00,npp_forest86.e00, npp_forest87.e00,npp_forest88.e00,npp_forest89.e00,npp_forest90.e00,npp_forest91.e00, npp_forest92.e00,npp_forest93.e00,npp_forest94.e00,npp_forest95.e00,npp_forest96.e00, npp_forest97.e00,npp_forest98.e00,npp_forest99.e00,npp_forest00.e00,npp_forest01.e00, npp_forest02.e00,npp_forest03.e00,npp_forest04.e00,npp_forest05.e00,npp_forest06.e00 青藏高原草地生态系统NPP(1982-2006年): npp_grass82.e00,npp_grass83.e00,npp_grass84.e00,npp_grass85.e00,npp_grass86.e00, npp_grass87.e00,npp_grass88.e00,npp_grass89.e00,npp_grass90.e00,npp_grass91.e00, npp_grass92.e00,npp_grass93.e00,npp_grass94.e00,npp_grass95.e00,npp_grass96.e00, npp_grass97.e00,npp_grass98.e00,npp_grass99.e00,npp_grass00.e00,npp_grass01.e00, npp_grass02.e00,npp_grass03.e00,npp_grass04.e00,npp_grass05.e00,npp_grass06.e00 青藏高原生物量碳、土壤碳: Biomass.e00,Socd.e00 土壤碳含量数据(Socd)是参考全国第二次土壤普查的数据与《中国1:100万土壤图》按土壤亚类插值生成。 NPP数据来自CASA模型与AVHRR数据模拟生成: Potter CS, Randerson JT, Field CB et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7: 811–841. 生物量碳数据来自HRBM模型模拟生成: McGuire AD, Sitch S, et al. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 2001, 15 (1), 183-206. 原始资料主要是遥感数据和野外观测数据。精度较好;生产过程中与野外实测数据进行的验证和调参,是模拟结果尽量与野外实测数据保持在可接受的误差范围内;NPP数据与野外实测数据的验证结果表明,误差保持在15%的范围内。 空间分辨率0.05度×0.05度(经度×纬度)。
周才平
本数据集包含了青藏高原主要城市与县1970-2006年牲畜数量变化序列数据,用于研究青藏高原社会经济变化。 数据表共有十个字段 字段1:年 解释:数据的年份 字段2:省 解释:所属的省份 字段3:市/州 解释:所属的市或者州 字段4:县 解释:县的名称 字段5:大牲畜(万头) 解释:牛、马、骡、驴、骆驼等大牲畜的数量 字段6:牛群(万头) 解释:牛的数量 字段7:马属动物(万头)解释:马、骡、驴等马属动物的数量 字段8:马(万头) 解释:马的数量 字段9:羊(万头) 解释:羊的数量 字段10:数据来源 解释:数据摘取的来源 数据来自统计年鉴与县志,部分清单如下: [1] 甘肃年鉴编委会. 甘肃年鉴[J]. 北京:中国统计出版社,1984,1988-2009 [2] 云南省统计局. 云南统计年鉴[J]. 北京:中国统计出版社,1988-2009 [3] 四川省统计局,四川调查总队. 四川统计年鉴[J]. 北京:中国统计出版社,1987-1991,1996-2009 [4] 新疆维吾尔自治区统计局. 新疆统计年鉴[J]. 北京:中国统计出版社,1989-1996,1998-2009 [5] 西藏自治区统计局. 西藏统计年鉴[J]. 北京:中国统计出版社,1986-2009 [6] 青海省统计局. 青海统计年鉴[J]. 北京:中国统计出版社,1986-1994,1996-2008. [7] 互助土族自治县志编纂委员会. 互助土族自治县志[J]. 青海:青海人民出版社,1993 [8] 海晏县志编纂委员会. 海晏县志[J]. 甘肃:甘肃文化出版社,1994 [9] 门源县志编纂委员会. 门源县志[J]. 甘肃:甘肃人民出版社,1993 [10] 贵南县志编纂委员会. 贵南县志[J]. 陕西:三秦出版社,1996 [11] 贵德县志编纂委员会. 贵德县志[J]. 陕西:陕西人民出版社,1995 [12] 尖扎县志编纂委员会. 尖扎县志[J]. 甘肃:甘肃人民出版社,2003 [13] 达日县志编纂委员会. 达日县志[J]. 陕西:陕西人民出版社,1993 [14] 格尔木市志编纂委员会. 格尔木市志[J]. 北京:方志出版社,2005 [15] 德令哈市志编纂委员会. 德令哈市志[J]. 北京:方志出版社,2004 [16] 天峻县志编纂委员会. 天峻县志[J]. 甘肃:甘肃文化出版社,1995 [17] 乃东县志编纂委员会. 乃东县志[J]. 北京:中国藏学出版社,2006 [18] 古浪县志编纂委员会. 古浪县志[J]. 甘肃:甘肃人民出版社,1996 [19] 阿克塞哈萨克族自治县志编纂委员会. 阿克塞哈萨克族自治县志[J]. 甘肃:甘肃人民出版社,1993 [20] 岷县志编纂委员会. 岷县志[J]. 甘肃:甘肃人民出版社,1995 [21] 宕昌县志编纂委员会. 宕昌县志[J]. 甘肃:甘肃文化出版社,1995 [22] 宕昌县志编纂委员会. 宕昌县志(续编)(1985-2005)[J]. 甘肃:甘肃文化出版社,2006 [23] 文县志编纂委员会. 文县志[J]. 甘肃:甘肃文化出版社,1997 [24] 康乐县志编纂委员会. 康乐县志[J]. 上海:三联书店. 1995 [25] 积石山(保安族 东乡族 撒拉族)自治县志编纂委员会. 积石山(保安族 东乡族 撒拉族)自治县志[J],甘肃:甘肃文化出版社,1998 [26] 碌曲县志编纂委员会. 碌曲县志[J]. 甘肃:甘肃人民出版社,2006 [27] 舟曲县志编纂委员会. 舟曲县志[J]. 上海:三联书店. 1996 [28] 夏河县志编纂委员会. 夏河县志[J]. 甘肃:甘肃文化出版社,1999 [29] 卓尼县志编纂委员会. 卓尼县志[J]. 甘肃:甘肃民族出版社,1994 [30] 迭部县志编纂委员会. 迭部县志[J]. 甘肃:兰州大学出版社,1998 [31] 彭县志编纂委员会. 彭县志[J]. 四川:四川人民,1989 [32] 灌县志编纂委员会. 灌县志[J]. 四川:四川人民出版社,1991 [33] 温江县志编纂委员会. 温江县志[J]. 四川:四川人民出版社,1990 [34] 什邡县志编纂委员会. 什邡县志[J]. 四川:四川大学出版社,1988 [35] 天全县志编纂委员会. 天全县志[J]. 四川:四川科学技术出版社,1997 [36] 石棉县志编纂委员会. 石棉县志[J]. 四川:四川辞书出版社,1999 [37] 芦山县志编纂委员会. 芦山县志[J]. 四川:方志出版社,2000 [38] 红原县志编纂委员会. 红原县志[J]. 四川:四川人民出版社,1996 [39] 汶川县志编纂委员会. 汶川县志[J]. 四川:巴蜀书社,2007 [40] 得荣县志编纂委员会. 得荣县志[J]. 四川:四川大学,2000 [41] 白玉县志编纂委员会. 白玉县志[J]. 四川:四川大学出版社,1996 [42] 巴塘县志编纂委员会. 巴塘县志[J]. 四川:四川民族出版社,1993 [43] 九龙县志编纂委员会. 九龙县志续篇(1986-2000)[J]. 四川:四川科学技术出版社,2007 [44] 贡山独龙族怒族自治县志编纂委员会. 贡山独龙族怒族自治县志[J]. 北京:民族出版社,2006 [45] 泸水县志编纂委员会. 泸水县志[J]. 云南:云南人民出版社,1995 [46] 德钦县志编纂委员会. 德钦县志[J]. 云南:云南民族,1997 [47] 于田县志编纂委员会. 于田县志[J]. 新疆:新疆人民出版社,2006 [48] 策勒县志编纂委员会. 策勒县志[J]. 新疆:新疆人民出版社,2005 [49] 和田县志编纂委员会. 和田县志[J]. 新疆:新疆人民出版社,2006 [50] 新疆且末县地方志编纂委员会. 且末县志[J]. 新疆:新疆人民出版社,1996 [51] 新疆莎车县志编纂委员会. 莎车县志[J]. 新疆:新疆人民出版社,1996 [52] 叶城县志编纂委员会. 叶城县志[J]. 新疆:新疆人民出版社,1999 [53] 新疆阿克陶县地方志编纂委员会. 阿克陶县志[J]. 新疆:新疆人民出版社,1996 [54] 新疆乌恰县地方志编纂委员会. 乌恰县志[J]. 新疆:新疆人民出版社,1995
国家统计局
青藏高原湖泊水位观测数据集包含扎日南木错,巴木错,达瓦错,达则错和蓬错湖泊的水位日变化数据。 湖水水位通过安装在湖岸边的HOBO水位计(U20-001-01)观测,再通过安装在岸边的气压计或附近气象站气压数据进行校正,然后得到真实的水位变化。精度小于0.5cm。 数据集包含以下内容: 2010-2017年扎日南木错湖水水位日变化数据; 2013-2017年巴木错湖水水位日变化数据; 2013-2017年达瓦错湖水水位日变化数据; 2013-2017年达则错湖水水位日变化数据; 2013-2017年蓬错湖水水位日变化数据。 水位,单位:m。
类延斌
青藏高原冰芯-积雪黑碳含量数据集包括5个表:1 Xu et al. 2006 AG,2 Xu et al. 2009 PNAS_Conc,3 Xu et al. 2009 PNAS_flux,4 Xu et al. 2012 ERL,5 Wang et al. 2015 ACP。 数据采集地点包括煤矿冰川、冬克玛底、枪勇、抗物热、纳木那尼、慕士塔格、绒布、唐古拉山、宁金岗桑、左丘普、天山乌鲁木齐河源1号等冰川,采集地点经纬度,高程等信息在数据中均有标注。 数据主要指标为:地点、时间、有机碳(organic carbon,OC)、元素碳(elemental carbon,EC)、黑碳(black carbon,BC)含量和通量。 地点:经纬度 时间:年份或日期 OC:有机碳 EC:元素碳 BC:黑碳 Conc.:含量,单位:ng g-1 Flux:通量,单位:mg m-2a-1 数据来自课题: ①国家重点基础研究发展计划(973计划):全球变化敏感因子的时空特性与遥感模式化;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:科技部 ②国家重点基础研究项目:青藏高原形成演化对全球变化的响应与适应对策;负责人:姚檀栋单位:中国科学院青藏高原研究所资助者:科技部 ③国家自然科学基金面上项目:青藏高原雪冰中高分辨率碳黑记录研究;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ④国家自然科学基金面上项目:青藏高原冰芯包裹气体中气候环境信息的提取;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ⑤国家自然科学基金杰出青年基金项目:青藏高原雪冰-大气化学与环境变化;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ⑥国家自然科学基金青年基金项目:藏东南冰芯近百年来南亚人类活动气溶胶排放与燃烧得变化研究;负责人:王茉单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 观测方法:两步加热法、热/光学碳分析方法和单颗粒黑碳气溶胶光度计。
徐柏青
青藏高原混合土壤水分数据产品是利用了遥感观测、原位测量和模型模拟技术。原位土壤水分(SM)观测结合了青藏高原气候带的分类,用于在高原尺度上产生原位测量的SM气候学。使用产生的青藏高原尺度原位SM气候学来缩放模型模拟的SM数据,其随后用于缩放SM卫星观测。然后通过应用三重配置和最小二乘法来客观地混合气候学尺度的卫星和模型模拟的SM。最终的混合SM可以复制不同气候区的SM动力学,从亚湿润地区到青藏高原的半干旱和干旱地区。 - 时间分辨率:天,从01/05/2008开始 - 空间分辨率:0.25°×0.25° - 数据集尺寸:61×121×975 - 单位:cm^3 cm^-3 数据质量开放评估。
Yijian Zeng
将冰湖划分为冰面湖、与冰川末端相连和非相连湖泊等三种类型。在分类的基础上,研究第三极地区各流域冰湖的数量与面积、不同大小面积变化幅度、与冰川距离远近、有冰川融水径流补给与无冰川融水径流补给冰湖面积的变化差异以及冰湖面积随海拔梯度变化特征等内容。 数据源:Landsat TM/ETM+ 1990,2000,2010。 数据通过目视解译,包括面积大于0.003平方公里的冰湖数据,结合原始影像与Google Earth检查编辑。 数据应用于第三极地区冰湖变化与冰湖溃决洪水( GLOF) 评估。 数据类型:矢量。 投影坐标系:Albers Conical Equal Area。
张国庆
本数据集为基于Landsat卫星影像获取的喜马拉雅中段波曲流域1976、1991、2000、2010年四期冰川、冰湖的矢量数据。 数据源来自Landsat遥感影像 1976:LM21510411975306AAA05、LM21510401976355AAA04 1991:LT41410401991334XXX02、LT41410411991334XXX02 2000:LE71410402000279SGS00、LE71400412000304SGS00、LE71410402000327EDC00、LE71410412000327EDC00 2010:LT51400412009288KHC00、LT51410402009295KHC00、LT51410412009311KHC00、LT51410402011237KHC00。 从各期遥感影像上人工提取冰川、冰湖边界。 冰川、冰湖边界提取误差估计为0.5个像元。 数据文件: Glacial_1976:1976年冰川矢量数据 Glacial_1991:1991年冰川矢量数据 Glacial_2000:2000年冰川矢量数据 Glacial_2010:2010年冰川矢量数据 Glacial_Lake_1976:1976年冰湖矢量数据 Glacial_Lake_1991:1991年冰湖矢量数据 Glacial_Lake_2000:2000年冰湖矢量数据 Glacial_Lake_2010:2010年冰湖矢量数据 冰湖矢量数据字段包括: 编号、名字、经纬度、海拔、面积、朝向、冰湖类型、长度、宽度、与冰川的距离
王伟财
该数据集记录了青海省1980~2016年全社会固定资产投资情况。数据来自统计年鉴: 《青海社会经济统计年鉴》和《青海统计年鉴》,从青海统计年鉴中摘录,精度同数据所摘取的统计年鉴。 数据表共有11个字段 字段1:年份 解释:数据的年份 字段2:总计 解释:固定资产投资总计 亿元 字段3:国有经济 解释:国有经济固定资产投资额 亿元 字段4:集体经济 解释:集体经济固定资产投资额 亿元 字段5:私营经济 解释:私营经济固定资产投资额 亿元 字段6:其他经济 解释:其他经济固定资产投资额 亿元 字段7:总增长 解释:固定资产投资总增长 % 字段8:国有增长 解释:国有固定资产投资增长 % 字段9:集体增长 解释:集体固定资产投资增长 % 字段10:私有增长 解释:私有固定资产投资增长 % 字段11:其他增长 解释:其他固定资产投资增长 %
青海省统计局, 青海省统计局
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件