夏季阳光照射下,覆盖在冰面上的积雪融化,在冰面上形成的不同形状大小的冰上水池融池。海冰表面融化造成的融池会降低海冰反照率,因而会对极区能量平衡造成显著影响,增加吸收进而加速海冰融化过程。在影响海冰反照率的因素中,融池是最重要且变化最剧烈的因素之一。随着气候的变化,夏季冰融化速度也越来越快。对地球表层的能量平衡具有重要的影响,冰融速度加快也可能使融池这种重要的自然现象成为北极海冰融化季节最显著的冰表面特征之一。融池的反照率介于海水与海冰之间,研究冰上融池也是研究北极海冰快速变化机理的一个重要组成部分。由于海冰融池和海面具有相似的微波信号特征,且受到风速等因素影响利用微波数据进行融池覆盖度的制图具有明显的不确定性,因此最为可靠的融池覆盖度遥感方法为利用中分辨率光学遥感数据(MODIS和MERIS传感器)进行亚像元融池覆盖度的制图。本数据集包含利用MODIS观测数据进行亚像元分解反演的北极海冰融池覆盖度。
3003 2019-10-20
冰盖的高程变化是冰动力过程和冰盖表面过程综合作用的结果,对气候变化敏感。长期的冰盖表面高程时间序列对研究冰盖的稳定性及其对全球气候变化的响应具有重要的科学价值。卫星测高数据为我们提供了大量的冰盖表面高程观测。但是单个卫星测高任务的寿命有限,要获得长时间的冰盖表面高程时间序列,需要将不同的卫星测高任务连接起来。我们使用一种新的平面最小二乘回归策略,在更完善地改正升轨道-降轨道偏差后,使用更大量的观测数据,有效地改正了任务间偏差的影响。同时,使用基于EOF重建方法插值方法对缺少观测值的网格进行插值以削弱插值误差的影响。最终,联合ERS-1、ERS-2、Envisat和CryoSat-2四个卫星测高任务的观测值,我们成功构建了1991-2020期间长达30年的格陵兰冰盖5公里格网分辨率的月均表面高程时间序列。随后,我们使用1993年以来的Operation IceBridge机载激光雷达测高数据以及ESA全球气候变化项目提供的格陵兰冰盖表面高程变化产品对该时间序列进行了验证。发现,我们的时间序列是可靠的。由其得到的冰盖表面高程变化的精度比ESA全球气候变化项目产品的精度和误差的离散度分别提高了19.3%和8.9%。受益于我们更精确的任务间偏差的改正,在Envisat和CryoSat-2两个测高任务连接的时期的冰盖表面高程变化的精度和误差的离散度提高的更多,分别达到30.9%和19.0%。基于该套数据,我们发现近30年来格陵兰冰盖的体积以初始速率-53.8 ± 4.5 km3/yr,加速度-2.2 ± 0.3 km3/yr2加速损失。同时,我们还发现北大西洋涛动的相位转换对格陵兰冰盖表面高程的变化有着显著的影响。此外,该数据还是评估格陵兰冰盖质量平衡及其对全球海平面的贡献和研究格陵兰冰盖对气候变化的响应过程与机制的重要基础数据。
631 2021-08-25
新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
14987 2021-08-25
2012年8月19日,在黑河中上游的核心观测区域,利用运12飞机,搭载Leica公司ALS70,开展了lidar航空遥感飞行试验。ALS70激光波长为1064纳米,多次回波(1,2,3和末次)。小沙漠地区飞行绝对航高2900米,平均点云密度 点/平方米。通过参数检校、点云自动分类和人工编辑等步骤,最终形成DEM和DSM数据产品。
10803 2017-08-26
本数据集包括南极冰盖花杆、冰(雪)芯/雪坑、自动气象站高度仪和探地雷达观测的日平均、年平均和多年平均表面物质平衡数据。数据来自已发表的文献,数据报告及国际数据共享平台,经质量控制后,形成了到目前为止最为完善的南极冰盖表面物质平衡日、年和多年分辨率的数据集,其中年分辨率表面物质平衡数据跨度过去1000年。该数据集主要用于冰川学、气候学及水文学等学科领域,特别地可用于南极表面物质平衡时空变化定量分析,气候模式验证,驱动冰盖模式和粒雪化模型等等。
3892 2021-01-20
结合Landsat影像(4215景)、地形图,利用半自动水体提取及人工目视检查编辑,完成了过去60多年来(1960s, 1970s, 1990, 1995, 2000, 2005, 2010, 2015, 2020)详细的中国湖泊(大于1平方公里)数量与面积变化研究。从1960s到2020年,中国湖泊总数量(≥ 1 km^2)从2127个增加到2621个,面积从68537 km^2扩张到82302 km^2 。
32121 2019-09-04
EC-EARTH-Heihe是采用EC-EARTH全球模式输出结果作为驱动场模拟1980-2005年和RCP4.5情景下2006-2080黑河流域6小时数据。空间范围:模拟区域的网格中心位于(40.30N,99.50E), 水平分辨率为3 km,模式的模拟网格点数为161(经向)X 201(纬向)。 投影方式:LAMBERT正形投影,两个标准纬度为30N 和60N。 时间范围:1980年1月1日-2010年12月31日,时间间隔为6小时。 文件内容说明:采用grads无格式月存储。除最高、最低温度为日尺度以外,其他变量都是6小时数据。 可以采用MATLAB进行读取,可见tmax_erain_xiong_heihe.m文件说明。 黑河流域数据说明: 1) Anemometer west wind(m/s) 简称usurf 2) Anemometer south wind(m/s) 简称vsurf 3) Anemometer temperature (deg K) 简称tsurf 4)maximal temperature (deg K) 简称tmax 5) minimal temperature (deg K) 简称tmin 6) Anemom specific humidity (g/kg) 简称qsurf 7) Accumulated precipitation (mm/hr) 简称precip 8) Accumulated evaporation (mm/hr) 简称evap 9) Accumulated sensible heat (watts/m**2/hr) 简称sensible 10) Accumulated net infrared radiation (watts/m**2/hr) 简称netrad 文件名定义: 简称-ec-earth-6hour.年月 例如:precip-ec-earth-6hour.198001 为1980年1月6小时降水资料 (1) 采用EC-EARTH全球气候模式1980-2005年驱动模拟的历史6小时一次数据。 (2) 2006-2080年为EC-EARTH全球气候模式在RCP 4.5情景下生产黑河流域6小时一次数据资料。
10353 2017-11-29
内容为排露沟流域出山口量水堰每日径流量观测记录。排露沟流域空间范围:38.529-38.558N,100.286-100.536E。数据日期包括自2013年5月1日至2013年9月5日。单位为m3/day。
7139 2014-06-10
无论从全球尺度亦或是局地尺度而言,土壤数据及其重要,而由于缺乏可靠的土壤数据,土地退化评估、环境影响研究和、可持续的土地管理干预措施收到了极大的瓶颈阻碍。受到土壤信息数据在全世界的迫切需要,特别是在气候变化公约的背景下,国际应用系统分析研究所(IIASA)及联合国粮农组织(FAO)和京都协议对土壤碳测量和联合国粮农组织/国际全球农业生态评价研究(GAEZ v3.0)共同倡导下建立了新一代世界土壤数据库(Harmonized World Soil Database version 1.2 )(HWSD V1.2).其中,中国地区数据源为1995年全国第二次土地调查由南京土壤所所提供的1:1,000,000土壤数据。数据格式:grid栅格格式,投影为WGS84。采用的土壤分类系统主要为FAO-90。 核心土壤制度单元唯一验证标识符: MU_GLOBAL-HWSD数据库土壤制图单元标示符,连接了GIS图层。 MU_SOURCE1 和 MU_SOURCE2- 源数据库制图单元标识符 SEQ-土壤制图单元组成中的土壤单元序列; 土壤分类系统利用FAO-7分类系统或 FAO-90分类系统(SU_SYM74 resp. SU_SYM90)或FAO-85(SU_SYM85). 土壤属性表主要字段包括: ID(数据库ID) MU_GLOBAL(土壤单元标识符)(全球) SU_SYMBOL 土壤制图单元 SU_SYM74(FAO74分类); SU_SYM85(FAO85分类); SU_SYM90(FAO90土壤分类系统中土壤名称); SU_CODE 土壤制图单元代码 SU_CODE74 土壤单元名称 SU_CODE85 土壤单元名称 SU_CODE90 土壤单元名称 DRAINAGE(19.5); REF_DEPTH(土壤参考深度); AWC_CLASS(19.5); AWC_CLASS(土壤有效水含量); PHASE1: Real (土壤相位); PHASE2: String (土壤相位); ROOTS: String (到土壤底部存在障碍的深度分类); SWR: String (土壤含水量特征); ADD_PROP: Real (土壤单元中与农业用途有关的特定土壤类型); T_TEXTURE(顶层土壤质地); T_GRAVEL: Real (顶层碎石体积百分比);(单位:%vol.) T_SAND: Real (顶层沙含量); (单位:% wt.) T_SILT: Real (表层粉沙粒含量); (单位:% wt.) T_CLAY: Real (顶层粘土含量); (单位:% wt.) T_USDA_TEX: Real (顶层USDA土壤质地分类); (单位:name) T_REF_BULK: Real (顶层土壤容重); (单位:kg/dm3.) T_OC: Real (顶层有机碳含量); (单位:% weight) T_PH_H2O: Real (顶层酸碱度) (单位:-log(H+)) T_CEC_CLAY: Real (顶层粘性层土壤的阳离子交换能力); (单位:cmol/kg) T_CEC_SOIL: Real (顶层土壤的阳离子交换能力) (单位:cmol/kg) T_BS: Real (顶层基本饱和度); (单位:%) T_TEB: Real (顶层交换性盐基);(单位:cmol/kg) T_CACO3: Real (顶层碳酸盐或石灰含量) (单位:% weight) T_CASO4: Real (顶层硫酸盐含量);(单位:% weight) T_ESP: Real (顶层可交换钠盐);(单位:%) T_ECE: Real (顶层电导率)。 (单位:dS/m) S_GRAVEL: Real (底层碎石体积百分比);(单位:%vol.) S_SAND: Real (底层沙含量); (单位:% wt.) S_SILT: Real (底层淤泥含量); (单位:% wt.) S_CLAY: Real (底层粘土含量); (单位:% wt.) S_USDA_TEX: Real (底层USDA土壤质地分类); (单位:name) S_REF_BULK: Real (底层土壤容重); (单位:kg/dm3.) S_OC: Real (底层有机碳含量); (单位:% weight) S_PH_H2O: Real (底层酸碱度) (单位:-log(H+)) S_CEC_CLAY: Real (底层粘性层土壤的阳离子交换能力); (单位:cmol/kg) S_CEC_SOIL: Real (底层土壤的阳离子交换能力) (单位:cmol/kg) S_BS: Real (底层基本饱和度); (单位:%) S_TEB: Real (底层交换性盐基);(单位:cmol/kg) S_CACO3: Real (底层碳酸盐或石灰含量) (单位:% weight) S_CASO4: Real (底层硫酸盐含量);(单位:% weight) S_ESP: Real (底层可交换钠盐);(单位:%) S_ECE: Real (底层电导率)。 (单位:dS/m) 本数据库分两层,其中以顶层(T)土壤厚度为(0-30cm),底层(S)土壤厚度为(30-100cm)。 其他属性值请参考说明HWSD1.2_documentation文档.pdf,The Harmonized World Soil Database (HWSD V1.2) Viewer-中文说明及HWSD.mdb。
45649 2018-10-05
该数据集是基于MODIS 16天合成的NDVI产品(MOD13Q1 collection6)估算的三江源国家公园区域的植被生长季开始(Start of Season: SOS)和生长季结束的日期(End of Season: EOS)。共用了两种常见的物候期估算方法,分别是基于多项式拟合的阈值提取法(文件名中有poly字符)和基于双逻辑曲线(double logistic function)拟合后的拐点提取法(文件名中有sig字符)。该数据可以用来分析植被物候期与气候变化的关系。时间范围为2001年至2020年。空间分辨率为250m。数据中包含4个子文件夹,CJYYQ_phen是三江源国家公园长江源园区的物候结果,HHYYQ_phen是三江源国家公园黄河源园区的物候结果,LCJYYQ_phen是三江源国家公园澜沧江源园区的物候结果,SJY_phen是整个三江源区域的物候。 数据格式为geotif,建议使用arcmap或者Python+GDAL浏览和处理数据。
10579 2020-01-07
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件