该数据集包含位于西藏自治区昌都市江达县岗托镇矮拉山附近(98°29′16″E, 31°36′36″N)冻融滑坡及融冻泥流浅层地温、水分及现场气象要素监测数据,基于Hobo温度、水分及小型气象站通过现场监测获得。观测时间在2019年8月31日-2020年7月14日之间。通过一个完整冻融周期的现场监测,下载现场传感器自动获取的地温、水分及气象要素监测数据,通过一定的质量控制包括剔除传感器未完全适应土壤环境时的数据和传感器出现故障造成的系统误差。地温、水分观测时间间隔4小时,地温的观测深度为10cm, 20cm, 40cm, 60cm,80cm,100cm,150cm及200cm,共8层,水分的观测深度为20cm,50cm,100cm及200cm共4层。气象观测要素主要包括气温、降雨量、风速、风向及太阳辐射等,观测的时间间隔为30分钟(注:太阳辐射传感器最大量程为1276.8 W/m2,实际太阳辐射值大于最大量程时显示为1276.9 W/m2;风速传感器的最小启动风速为0.5m/s,当实际风速小于启动风速时,显示值为0。因此该数据无法体现超太阳常数现象和低于0.5m/s的风速)。质量控制包括剔除传感器未完全适应土壤环境时的数据和传感器出现故障造成的系统误差。经过矫正的最终数据以excel文件存储。获取的现场数据经多人复查审核,数据完整性和准确度达到95%以上。监测数据可为后期开展藏东南地区冻融滑坡和融冻泥流相关研究工作提供必要的数据支撑。
1513 2021-05-10
湖泊的形成与消失、扩张与收缩对生态环境演化和社会经济发展都有重要影响。由于受气候、生态环境和人类活动等因素的综合影响,湖泊水域范围的变化速度快、幅度大,对观测的频率和分布都有很高的要求。近几十年以来,卫星遥感技术以其快速、覆盖面广、成本低廉等优点,为较大区域的湖泊动态监测提供了重要数据基础。针对大范围、高精度、长时间序列的湖泊变化分析对遥感数据时空分辨率的需求,本数据集基于 Landsat 卫星数据的自动湖泊提取方法(Feng et al., 2015),利用 2000 年以来的 Landsat 多颗卫星的观测数据,收集了2000 年以来的云量小于 80%的所有Landsat 数据,获得共 96278 景影像(约 25T 数据量),结合高性能数据存储和处理能力,提取了青藏高原和中亚地区 2000-2015 年湖泊分布记录,形成了时空一致的逐月水域范围数据集。利用分层随机采样采集样点,通过人工解译,获取能够代表不同时空分布的验证样点。评价结果表明:研究区时间序列水体数据总体精度为 99.45%(±0.59),水体用户精度(错分)为 85.37% (±3.74),制图精度(漏分)为 98.17%(±1.05)。
4393 2019-05-05
本数据集包含:(1)基于测高卫星提取的北半球16个大型湖泊水库冰厚数据,时间跨度为1992-2019年,时间分辨率10天,文件名为Altimetric LIT for 16 large lakes.xlsx;(2)基于遥感湖冰模型的北半球1,313个面积50km^2以上湖泊的逐日湖冰厚度和湖泊表面积雪深度数据,时间跨度为2003-2018年,文件格式为nc格式;(3)未来湖冰厚度变化的预测情况,时间跨度2071-2099年,文件为table S1.xlsx;(4)一个用于查找湖泊的对照表,包含湖泊ID,名称,地理坐标和面积等信息。本数据集可以为全球湖冰和湖面积雪研究提供基础信息,便于深入理解在变化环境下湖冰的演变规律及其对湖泊生态环境和区域社会经济的影响。
2411 2022-03-28
青藏高原0.01°空间分辨率近地表气温数据集(1979-2018)通过对中国区域地面气象要素驱动数据集中空间分辨率为0.1°的气温数据进行降尺度得到。它包含日均气温和三小时分辨率的瞬时气温。其空间分辨率为0.01°(约1km)。时间范围为1979年到2018年。空间范围为73°E-106°E, 23°N-40°N。该数据集可以为地表辐射与能量平衡、气候变化、水文气象等领域的研究与应用提供较高空间分辨率的近地表气温数据。
14197 2020-04-14
“一带一路”沿线国家人均GDP增长恢复力数据集全面反映各国人均GDP增长恢复力水平,数据值越高,表明沿线国家人均GDP增长恢复力越强。人均GDP增长恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家人均GDP(2010年不变价美元)这一指标的逐年数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了人均GDP增长恢复力产品。“一带一路”沿线国家人均GDP增长恢复力数据集对分析和对比当前各国人均GDP增长恢复力状况具有重要参考意义。
1445 2022-03-22
“一带一路”沿线国家国内经济系统恢复力数据集全面反映各国国内经济系统恢复力水平,数据值越高,表明沿线国家国内经济系统恢复力越强。国内经济系统恢复力包括宏观经济发展恢复力、工业和服务业发展恢复力,数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家人均GDP、固定资本形成总额占GDP的百分比、按GDP平减指数衡量的通货膨胀、总储蓄占GDP的百分比、工业增加值占GDP的百分比、服务业增加值占GDP的百分比这6个指标的逐年数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了国内经济系统恢复力产品。“一带一路”沿线国家国内经济系统恢复力数据集对分析和对比当前各国国内经济系统恢复力状况具有重要参考意义。
837 2022-03-22
“一带一路”沿线国家CO2总量减排恢复力反映了沿线国家CO2总量减排恢复力水平,数据值越高,表明沿线国家CO2总量减排恢复力越强。CO2总量减排恢复力数据产品制备参考了2000—2020年全球大气研究排放数据库(Emissions Database for Global Atmospheric Research, EDGAR),利用2000-2020年“一带一路”沿线国家CO2排放总量的逐年数据,在考虑逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了CO2总量减排恢复力产品。“一带一路”沿线国家CO2总量减排恢复力数据集对分析和对比当前各国CO2总量减排恢复力状况具有重要参考意义。
1696 2022-03-23
北半球过去千年(1000-2000 AD)、年分辨率、2°空间分辨率气温场数据集(距平值)。本数据集通过古气候数据同化方法产生,同化的模型算子是MPI-ESM-P,观测数据为396条年分辨率的代用资料,同化方法为集合平方根滤波算法(EnSRF)。同化重建的气温场和气温观测资料、代用资料重建的气温具有很好的一致性(平均相关系数>0.6, p-value < 0.01)。数据可为研究过去千年北半球尺度和区域尺度气温变化提供高质量的基础数据。
1427 2021-01-09
数据集包括2015年11月27日- 2016年3月26日阿勒泰基站(lon:88.07, lon: 44.73)地面被动微波亮温、多角度亮温、10分钟四分量辐射和雪温、雪坑日观测数据和逐时气象数据。 日雪坑参数包括:积雪分层、分层厚度、密度、粒度、温度。 这些数据存储在5个NetCDF文件中,TBdata.nc, TBdata-multiangle.nc, Ten-minute 4 component radiation and snow temperature.nc, Hourly meteorological and soil data.nc and Daily snow pit data.nc,以及readme.doc。 TBdata.nc 为六通道双偏振微波辐射计RPG-6CH-DP自动采集的两偏振三个通道的亮度温度。内容包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 TBdata-multiangle.nc为两种极化的3个通道的7组多角度亮度温度。 包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 The ten-minute 4 component radiation and snow temperature. nc 为4组分辐射和层状雪温度。 内容包括:年、月、日、时、分、SR_DOWN、SR_UP、LR_DOWN、LR_UP、T_Sensor、ST_0cm、ST_5cm、ST_15cm、ST_25cm、ST_35cm、ST_45cm、ST_55cm。 The hourly meteorological and soil data.nc为每小时天气数据和分层土壤数据。内容包括年、月、日、时、Tair、Wair、Pair、Win、SM_10cm、SM_20cm、Tsoil_5cm、Tsoil_10cm、tsoil_15cm、Tsoil_20cm。 The daily snow pit data.nc为人工雪坑数据。观测时间为当地时间上午8:00-10:100。内容包括年、月、日、雪深、thickness_layer1、thickness_layer2、thickness_layer4、thickness_layer5、thickness_layer6、Long_layer1、Short_layer1、Long_layer2、Short_layer2、Long_layer3、Short_layer4、Long_layer5、Short_layer5、Long_layer6、short_layer6、Stube、snow shovel_0-10、 雪铲_10-20、雪铲_20-30、雪铲_30-40、雪铲_40-50、雪叉_10、雪叉_15、雪叉_20、雪叉_25、雪叉_30、雪叉_35、雪叉_40、雪叉_45、雪叉_50、形状1、形状2、形状3、形状4、形状5。
5904 2020-07-14
近地表气温是反映气候变化的重要物理参数。为了获得中国地区高时空分辨率的日数据(Tmax、Tmin和Tavg),我们充分分析了各种现有数据(再分析数据、遥感数据和原位数据)的优缺点。针对不同的天气条件建立了不同的Ta重建模型,并通过建立不同区域的修正方程进一步提高数据精度。最后,获得了1979 - 2018年中国逐日气温数据集(Tmax、Tmin和Tavg),空间分辨率为0.1°。 对于Tmax,使用原位数据的验证表明,均方根误差(RMSE)范围为0.86°C至1.78°C,平均绝对误差(MAE)范围为0.63°C至1.40°C,皮尔逊系数(R2)范围为0.96至0.99。Tmin的RMSE为0.78°C ~ 2.09°C, MAE为0.58°C ~ 1.61°C, R2为0.95 ~ 0.99。对于Tavg, RMSE范围为0.35°C ~ 1.00°C, MAE范围为0.27°C ~ 0.68°C, R2范围为0.99 ~ 1.00。此外,利用多种评价指标分析Ta的时空变化趋势,Tavg增加幅度大于0.0°C/a,与全球变暖的总体趋势一致。 综上所述,该数据集具有较高的空间分辨率和可靠的精度,弥补了之前在高空间分辨率下缺失的温度值(Tmax、Tmin和Tavg)。该数据集也为研究气候变化,特别是高温干旱和低温冷害提供了关键参数。
8349 2022-03-21
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件