• 青藏高原野外观测研究平台是开展青藏高原科学观测和研究的前沿阵地。基于高原地表过程与环境变化的陆面-边界层立体综合观测为青藏高原地气相互作用机理及其影响研究提供了大量的珍贵数据。本数据集综合了珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站、那曲高寒气候环境观测研究站、纳木错多圈层综合观测研究站、阿里荒漠环境综合观测研究站、慕士塔格西风带环境综合观测研究站2005-2016年逐小时大气、土壤和涡动观测数据。包含了由多层风速风向、气温、湿度以及气压、降水组成的梯度观测数据,辐射四分量数据,多层土壤温湿度和土壤热通量观测数据以及感热通量、潜热通量和二氧化碳通量组成的湍流数据。这些数据能广泛的应用于青藏高原气象要素特征分析、遥感产品评估和遥感反演算法的发展、数值模拟的评估和发展等研究中。

    查看详情
  • DEM是数字高程模型的英文简称(Digital Elevation Model)是流域地形、地物识别的重要原始资料。DEM 的原理是将流域划分为m 行n列的四边形(CELL),计算每个四边形的平均高程,然后以二维矩阵的方式存储高程。由于DEM 数据能够反映一定分辨率的局部地形特征,因此通过DEM 可提取大量的地表形态信息,这些信息包含流域网格单元的坡度、坡向以及单元格之间的关系等。同时根据一定的算法可以确定地表水流路径、河流网络和流域的边界。因此从DEM 提取流域特征,一个良好的流域结构模式是设计算法的前提和关键。 高程数据图是根据中国1:25万等高线和高程点形成的1km数据,包括DEM、山影(hillshade)、坡度(Slope)、坡向(Aspect)图 数据集投影: 两种投影方式 : 正轴割圆锥等面积投影 Albers Conical Equal Area(105、25、47) 大地坐标WGS84坐标系

    查看详情
  • 基于青藏工程走廊现有的15个活动层厚度监测场天然孔数据资料,运用GIPL2.0冻土模型模拟了青藏工程走廊的活动层厚度现状分布图。该模型需要合成时间序列的温度数据集,按照时间跨度分为两个阶段,分别是1980-2009和2010-2015,第一阶段的温度数据来自于中国气象驱动数据集(http://dam.itpcas.ac.cn/rs/?q=data#CMFD_0.1),第二阶段的数据应用空间分变率为1km的MODIS地表温度产品(MOD11A1/A2, MYD11A1/A2)。此外,模型需要的土质类型数据来自于分辨率为1公里的中国土壤数据库(V1.1),同时还考虑了地貌,基于实测的土壤热物理参数以及土地覆盖类型等将研究区域归为88类进行了模拟。 对模拟结果和现场实测数据进行了对比,结果显示具有较好的一致性,相关系数达到0.75。在高山地区,活动层平均厚度小于2.0 m,然而在河谷地带,活动层平均厚度大于4.0 m,在高地平原区,活动层厚度通常在3.0 m -4.0 m之间。

    查看详情
  • GAME/ Tibet 项目于1997 年夏季在安多(Amdo) 站作过短期预试验观测( PIOP) 。1998 年5~9 月, 安排了连续5 个加强观测期( IOP) , 每个IOP 约一个月。中、日、韩三国80 余名科学工作者分批赴青藏高原,进行了艰苦而卓有成效的工作。 各项观测试验计划顺利完成。并且从1998 年9 月加强观测结束后,5 个自动气象站(AWS) 、1 个自动气象综合观测站( PAM) 、1 个边界层塔及辐射综合观测站(Amdo) 及9 个土壤温度和湿度观测站一直连续观测至今, 取得了连续8 年零6 个月(从1997 年6 月开始) 极其珍贵的资料。 试验区设在藏北那曲地区的一个150 km ×200 km 的区域内(图1),同时在青藏公路沿线的D66,沱沱河和唐古拉山口(D105) 也建立了观测点。包括高原草甸、高原湖泊、荒漠化草原等不同下垫面上, 设置了以下观测站(点):(1) 两个包括大气和土壤的多学科综合观测站:安多(Amdo) 和那曲(NaquFx) 。这两个站含有多分量辐射观测系统、梯度观测塔、湍流通量直测系统、土壤温湿度梯度观测、无线电探空以及作为卫星资料地面真值利用的地面土壤湿度观测网和多角度光谱仪观测等;(2) 6 个自动气象站(D66 、沱沱河、D105 、D110 、Naqu 和MS3608) 。每个测站都有风、温、湿、压、辐射、地表温度、土壤温湿度和降水等观测;(3) 设在那曲北和南各约80 km 处的PAM( Portable Automated Meso - net) 站(MS3478和MS3637) 有类似于上述两个综合观测站(Amdo和NaquFx) 的主要项目, 同时有风、温、湿的湍流观测;(4) 9 个土壤温度和湿度观测点(D66 、沱沱河、D110 、WADD、NODA、Amdo 、MS3478、MS3478和MS3637) , 每个测站都包含有6 层土壤温度和9 层土壤湿度测量;(5) 一个设在那曲以南的三维多普勒雷达站和邻近(约100 km) 区域内的7 个加密雨量站( Precipitation gauge) , 辐射观测系统主要研究高原云与降水系统, 并作为TRMM 卫星一个地面真值站。 GAME-Tibet项目力求通过不同空间尺度的加强观测试验和长期监测,深入了解青藏高原的地气相互作用以及对亚洲季风系统的影响。 GAME/ Tibet 项目2000 年结束后, 已加入GEWEX(全球能量和水循环试验) 与CL IVAR (气候变化和预测) 两个大型国际计划联合组织的“全球协调加强观测计划(CEOP) ”, 开始执行“全球协调加强观测计划(CEOP) 亚澳季风之青藏高原试验研究”(CAMP/ Tibet ) 数据内容分为Prephase Observation Preriod (POP)1997年和IOP1998年 一、POP1997年数据内容: 1、Precipitation Guage Network (PGN) 2、Radiosonde Observation at Naqu 3、Analysis of Stable Isotope for Water Cycle Studies 4、Doppler radar observation 5、Large-Scale Hydrological Cycle in Tibet (Link to Numaguchi's home page) 6、Portable Automated Mesonet (PAM) [Japanese] 7、Ground Truth Data Collection(GTDC) for Satellite Remote Sensing 8、Tanggula AWS ( D105 station in Tibet ) 9、Syamboche AWS (GEN/GAME AWS in Nepal) 二、IOP1998年数据内容: 1、Anduo (1)PBL Tower 、(2)Radiation 、(3)Turbulence SMTMS 2、D66 (1)AWS (2)SMTMS (3)GTDC(4)Precipitation 3、Toutouhe (1)AWS(2)SMTMS(3)GTDC 4、D110 (1)AWS (2)SMTMS (3)GTDC(4)SMTMS 5、MS3608 (1)AWS (2)SMTMS (3)Precipitation 6、D105 (1)Precipitation (2)GTDC 7、MS3478(NPAM) (1)PAM (2)Precipitation 8、 MS3637 (1)PAM (2)SMTMS (3)Precipitation 9、NODAA (1)SMTMS (2)Precipitation 10、WADD (1)SMTMS (2)Precipitation (3)Barometricmd 11、AQB (1)Precipitation 12、Dienpa( RS2 ) (1)Precipitation 13、Zuri (1)Precipitation(2)Barometricmd 14、Juze (1)Precipitation 15、Naqu hydrological station (1)Precipitation 16、MSofNaqu(1)Barometricmd 16、Naquradarsite (1)Radarsystem(2)Precipitation 17、Syangboche[Nepal](1)AWS 18、Shiqu-anhe(1)AWS(2)GTDC 19、Seqin-Xiang(1)Barometricmd 20、NODA(1)Barometricmd(2)Precipitation(3)SMTMS 21、NaquHY(1)Barometricmd(2)Precipitation 22、NaquFx(BJ)(1)GTDC(2)PBLmd(3)Precipitation 23、MS3543(1)Precipitation 24、MNofAmdo(1)Barometricmd 25、Mardi(1)Runoff 26、Gaize(1)AWS(2)GTDC(3)Sonde

    查看详情
  • 对未来气候变化的有效评价,特别是对未来降水量的预测,是制定适应战略的重要依据。本数据是基于RegCM4.6模型,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP2.6、RCP4.5、RCP6.0和RCP8.5)、HadGEM2-ES(RCP2.6、RCP4.5和RCP8.5)、IPSL-CM5A-LR(RCP2.6、RCP4.5、RCP6.0和RCP8.5)、MIROC5(RCP2.6、RCP4.5、RCP6.0和RCP8.5)和NorESM1-M(RCP2.6、RCP4.5、RCP6.0和RCP8.5)等多模型不同碳排放浓度情景下进行区域动力降尺度,获得2007-2099年空间分辨率为0.25度,时间分辨率分别为3小时(部分为6小时)、逐日和逐年的21套中国全境未来气候数据。

    查看详情
  • 植物功能型(PFT)是根据植物种的生态系统功能及其资源利用方式而对宠大的植物种进行的组合,每一种植物功能型共享相似的植物属性,是将植物种的多样性简化为植物功能和结构的多样性。植物功能型的概念受到生态学家特别是生态系统建模者的推崇。其基本假设是全球重要的生态系统动态可以通过有限的植物功能型表达和模拟。目前,植物功能型已被广泛用于生物地理模型、生物地球化学模型、陆面过程模型和全球动态植被模型,如美国国家大气研究中心(NCAR)的陆面过程模型已经将原来用土地覆盖信息变为应用植物功能型图(Bonan et al., 2002)。植物功能型已经被用于动态全球植被模型(DGVM)中,用以预测全球变化情景下生态系统结构与功能的变化。 参考全球植物功能型分类体系,根据模型需求,将土地覆盖类型与植物功能型合并考虑,确定该数据的分类体系下表。 1、植物功能型分类体系 1 Needleleaf evergreen tree, temperate 2 Needleleaf evergreen tree, boreal 3 Needleleaf deciduous tree 4 Broadleaf evergreen tree, tropical 5 Broadleaf evergreen tree, temperate 6 Broadleaf deciduous tree, tropical 7 Broadleaf deciduous tree, temperate 8 Broadleaf deciduous tree, boreal 9 Broadleaf evergreen shrub, temperate 10 Broadleaf deciduous shrub, temperate 11 Broadleaf deciduous shrub, boreal 12 C3 grass, arctic 13 C3 grass 14 C4 grass 15 Crop 16 Permanent wetlands 17 Urban and built-up lands 18 Snow and ice 19 Barren or sparsely vegetated lands 20 Bodies of water 2、制图方法 中国1公里植物功能型图是根据Bonan等(Bonan et al., 2002)提出的土地覆盖与植物功能型转换的气候规则,对MICLCover土地覆盖图(冉有华 等,2009;Ran et al., 2012)进行转换。MICLCover土地覆盖图是融合了2000年中国1:10万土地利用数据、中国植被图集(1:100万)的植物型、中国1:10万冰川分布图、中国1:100万沼泽湿地图和MODIS 2001年土地覆盖产品(MOD12Q1)的最新发布的土地覆盖数据,采用IGBP土地覆盖分类系统。评价显示,其可能是目前存在的全国1km尺度上精度最高的土地覆盖图。气候数据利用何杰等(2010)发展的1981-2008年的空间分辨率为0.1度、时间分辨率为3小时的中国大气驱动数据,是我国现存的在全国尺度上具有最高时空分辨率的气候数据,该数据融合了Princeton 陆面模式驱动数据(Sheffield et al., 2006)、GEWEX-SRB 辐射数据(Pinker et al., 2003)、TRMM 3B42 和APHRODITE 降水数据以及中国气象局740个气象台站的观测数据。根据RanYouhua等(2010)的评价结果,GLC2000在目前的全球土地覆盖数据集中,具有相对较高的精度,且其分类系统中没有混交林这一类,因此MICLCover土地覆盖图中的混交林利用GLC2000 (Bartholome and Belward, 2005; 徐文婷 等,2005)中的信息进行了替换。该数据可用于陆面过程模型等相关研究中。

    查看详情
  • 青藏高原过去的冻土图主要基于稀少的台站气温观测,采用基于连续性的分类系统。本数据集利用地理加权回归模型(GWR)综合了经过时空重建的MODIS地表温度、叶面积指数、积雪比例和国家气象信息中心多模型土壤水分预报产品、融合了4万多个气象站降水观测和FY2卫星观测的降水产品及152个气象台站2000-2010年的多年平均气温观测数据,模拟得到了青藏高原过去1公里分辨率的多年平均气温数据,利用多年冻土热条件分类系统,将多年冻土分为非常冷(Very cold)、冷(Cold)、凉(Cool)、暖(Warm)、非常暖(Very warm)和可能解冻(Likely thawing)几个类型。该图显示,扣除湖泊和冰川,青藏高原多年冻土总面积约为107.19万平方公里。验证表明该图具有更高的精度。可为今后冻土工程规划设计与环境管理等提供支持。

    查看详情
  • 地表温度作为地表能量平衡中的主要参数,表征了地气间能量和水分交换的程度,广泛应用于气候学、水文学和生态学等的研究中。 在冻土研究中,气候是冻土存在和发展的决定性因素之一,其中地表温度是影响冻土分布的主要气候因子,其影响冻土发生发育以及分布,是冻土建模的上边界条件,对寒区水文过程的研究具有重要的意义。 数据集基于青藏高原工程走廊DEM及观测站资料分析了青藏高原2000-2014地表温度变化趋势。利用MODIS上下午星Terra和Aqua的地表温度数据产品MOD11A1/A2、MYD11A1/A2,基于影像时空信息对云覆盖像元下地表温度信息进行了重建,采用昆仑山(湿地、草原)、北麓河(草原、草甸)、开心岭(草甸、草原)、唐古拉山(草甸、湿地)8个站点对重建信息及地表温度代表性问题进行了分析,通过相关性系数(R2)、均方根误差(RMSE)、平均绝对误差(MAE)和平均偏差(MBE)验证指标得出:(1)基于时空信息的MODIS云覆盖像元下地表温度重建精度较高;(2)上下午星Terra和Aqua四次观测加权平均代表性最好。 基于MODIS地表温度信息重建及代表性问题的分析,获取了青藏高原及其工程走廊带2000-2010年年均MODIS地表温度数据。 可以看出2000-2010年地表温度也在经历着波动的增温趋势,这与青藏高原以及青藏工程走廊多年冻土段气候变化保持基本相同的变化趋势。

    查看详情
  • 本数据集是建立在青藏高原基础上的高原土壤水分和土壤温度观测数据,用于量化粗分辨率卫星和土壤水分和土壤温度模型产物的不确定性。青藏高原土壤温湿度观测数据(Tibet-Obs)由四个区域尺度的原位参考网络组成,包括寒冷半干旱气候的那曲网络,寒冷潮湿气候的玛曲网络和寒冷干旱的阿里网络,以及帕里网络。这些网络提供了对青藏高原不同气候和地表水文气象条件的代表性覆盖。 - 时间分辨率:逐时 - 空间分辨率:点测量 - 测量精度:土壤水分,0.00001;土壤温度,0.1℃;数据集尺寸:标称深度为5,10,20,40和80厘米的土壤水分和温度统计值 - 单位:土壤水分,cm ^ 3 cm ^ -3; 土壤温度, ℃

    查看详情
  • 本数据集采用SMMR(1978-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)逐日亮温数据,由双指标(TB,37v,SG)冻融判别算法生成,分类结果包含冻结地表、融化地表、沙漠及水体四种类型。数据覆盖范围为中国大陆主体部分,空间分辨率为25.067525 km,EASE-Grid投影方式,以ASCIIGRID格式存储。 该数据集中的所有ASCII码文件可以直接用文本程序(如记事本)打开。除了头文件,主体内容为数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表降水。如果要用图示来显示的话,我们推荐用ArcView + 3D 或 Spatial Analyst 扩展模块来读取,在读取过程中会生成grid格式的文件,所显示的grid文件就是该ASCII码文件的图形表达。读取方法: [1] 在ArcView软件中添加3D或Spatial Analyst扩展模块,然后新建一个View; [2] 将View激活,点击File菜单,选择Import Data Source选项,弹出Import Data Source选择框,在此框中的Select import file type:中选择ASCII Raster,自动弹出选择源ASCII文件的对话框,点击寻找该数据集中的任一个ASCII文件,,然后按OK键; [3] 在Output Grid对话框中键入的Grid文件名字(建议使用有意义的文件名,以便以后自己查看)和点击存放此Grid文件的路径,再次按Ok键,然后按Yes(要选择整型数据),Yes(把生成grid文件调入到当前的view中)。生成的文件可以按照Grid文件标准进行属性编辑。这样就完成了显示将ASCII文件显示成Grid文件的过程。 [4] 批处理时,可以使用ARCINFO的ASCIIGRID命令,编写成AML文件,再用Run命令在Grid模块中完成: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT} 本数据的生产得到自然科学基金项目:中国西部环境与生态科学数据中心(90502010)、中国西部地区陆面数据同化系统研究(90202014)以及冻土主被动微波辐射传输模拟及其辐射散射特性研究(41071226)的支持。

    查看详情