• 青藏高原过去的冻土图主要基于稀少的台站气温观测,采用基于连续性的分类系统。本数据集利用地理加权回归模型(GWR)综合了经过时空重建的MODIS地表温度、叶面积指数、积雪比例和国家气象信息中心多模型土壤水分预报产品、融合了4万多个气象站降水观测和FY2卫星观测的降水产品及152个气象台站2000-2010年的多年平均气温观测数据,模拟得到了青藏高原过去1公里分辨率的多年平均气温数据,利用多年冻土热条件分类系统,将多年冻土分为非常冷(Very cold)、冷(Cold)、凉(Cool)、暖(Warm)、非常暖(Very warm)和可能解冻(Likely thawing)几个类型。该图显示,扣除湖泊和冰川,青藏高原多年冻土总面积约为107.19万平方公里。验证表明该图具有更高的精度。可为今后冻土工程规划设计与环境管理等提供支持。

    查看详情
  • 全面估算了1132个大于1 km2湖泊的水量变化。总的来说,1976至2019年间,湖泊水储量增加了169.7±15.1 Gt(3.9±0.4 Gt yr-1),主要发生在内流区(157.6±11.6或3.7±0.3 Gt yr-1)。1976至1995年间,湖泊水量显示减少(-45.2±8.2Gt或-2.4±0.4Gt yr-1),但在1995至2019年间,大幅增加(214.9±12.7Gt或9.0±0.5Gt yr-1)。2010至2015年间,水量增速减缓(23.1±6.5 Gt或4.6±1.3 Gt yr-1),随后在2015至2019年间再次出现高值(65.7±6.7 Gt或16.4±1.7 Gt yr-1)。在1976-2019年间,冰川补给湖水量增加(127.1±14.3 Gt)远远高于非冰川补给湖(42.6±4.9 Gt),这也与冰川补给湖数量多,面积广有关。另外,封闭湖水量增幅(161.9±14.0 Gt)大大高于外流湖(7.8±5.8 Gt)。

    查看详情
  • 该数据集结合中国第二次编目数据、空间分辨率30米且云量覆盖度低于10%的landsat系列光学影像数据及SRTM等多种数据的基础上,利用ArcGIS,ENVI和Google Earth等处理软件,通过人工目视解译的方法提取冰川边界10km范围内的冰湖边界,并对解译后的数据进行统一的冰湖的类型、所属山脉、省域、流域等属性添加、质量检验与精度验证。空间分辨率30米。 由两部分组成,分别为利用冰川编目数据生成冰湖分布区矢量文件和2015年中国西部冰湖编目数据集。 为中国西部冰湖-冰川耦合关系、水资源利用与管理等相关研究的参考数据,还可以作为区域气候变化与冰冻圈等相关研究的基础数据。

    查看详情
  • 青藏高原光学仪器遥感1km积雪覆盖数据集(1989-2018)基于星载光学仪器观测数据云雪判识方法制作,覆盖时间从1989年到2018年(每年1-4月和10-12月两个时段),时间分辨率为逐日,覆盖范围为青藏高原(17°N -41°N,65°E -106°E),采用等经纬度投影,空间分辨率为0.01°×0.01°。数据集以日产品表征了卫星观测时刻晴空无云或透明薄云下的地面是否为积雪所覆盖。输入数据源为NOAA与MetOp卫星的AVHRR L1数据,以及从TERRA/MODIS对应于AVHRR通道的L1数据。产品处理方法为独立于云掩模产品的动态阈值决策树算法(DT),即算法同时判别云雪,且其云检测强调保留雪信息,特别是透明卷云下的雪。DT算法针对不同情况,考虑了多种判识手段,如水云上的冰云,森林和沙地的积雪,薄雪或融雪等;根据地表类型、DEM和季节设定动态阈值;采用多种质量控制手段,如在重度气溶胶或烟尘覆盖的低纬度森林中剔除伪雪,参考最大月雪线和最小雪面亮度温度剔除伪雪;优化不同种类型云雪和晴空无雪陆地的判识流程。DT算法在正常情况下能区分大部分云雪,但会低估10月份青藏高原的积雪。基于多年地面气象台站雪深观测资料验证表明,本数据集对晴空条件下地面有无积雪的总体判识准确率在95%以上。数据采用标准的HDF4格式存储,内部有积雪覆盖和质量码两个SDS,维度均为4100列×2400行,且文件内部有完备的属性描述。

    查看详情
  • 新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。

    查看详情
  • 青藏高原湖泊面积长时间序列数据集包含1970s至2013年364个面积大于10平方公里湖泊的面积序列数据。根据Landsat影像得来,以Landsat 10月份数据为主,每隔3年取一个数据,减少季节变化的同时,可利用数据达到最大。 数据使用NDWI水体指数提取,每个湖泊经过人工目视检查与编辑。 数据应用于青藏高原湖泊变化、湖泊水量平衡、气候变化的研究。 数据类型:矢量。 投影方式:WGS84。

    查看详情
  • 青藏高原流域边界数据集使用2000年的航天飞机雷达地形任务收集的干涉合成孔径雷达SRTM DEM 数据、参考河流、湖泊等水系辅助数据,利用arcgis水文模型,分析、提取河网,将青藏高原划分为AmuDayra、Brahmaputra、Ganges、Hexi、Indus、Inner、Mekong、Qaidam、Salween、Tarim、Yangtze、Yellow等12个子流域。其中研究区外围边界是基于2500米等高线。

    查看详情
  • 中国第二次冰川编目以分辨率较高的Landsat TM/ETM+遥感卫星数据为主要冰川边界提取数据源,并以最新全球数字高程模型SRTM V4为冰川属性提取数据源,采用当前国际通用的波段比值阈值分割法提取裸冰区冰川边界,开发了分冰岭提取算法提取冰川分冰岭并用于单条冰川的分割,同时采用国际通用算法计算冰川属性,从而获得了中国西部主要冰川区包含逐条冰川信息的矢量数据和属性数据。通过与部分野外GPS实地测量数据和更高分辨率遥感影像(如QuickBird、WorldView等)的对比显示,第二次中国编目中的冰川矢量数据具有较高的定位精度,能够满足国土、水利、交通、环境等领域对冰川数据的要求。 冰川编目属性:Glc_Name(冰川名称)、Drng_Code(流域编码)、FCGI_ID(第一次编目冰川编码)、GLIMS_ID(GLIMS冰川编码)、Mtn_Name(山系名称)、Pref_Name(所在行政区划)、Glc_Long(冰川经度)、Glc_Lati(冰川纬度)、Glc_Area(冰川面积)、Abs_Accu(绝对面积精度)、Rel_Accu(相对面积精度)、Deb_Area(表碛区面积)、Deb_A_Accu(表碛区面积绝对精度)、Deb_R_Accu(表碛区面积相对精度)、Glc_Vol_A(估算冰川体积1)、Glc_Vol_B(估算冰川体积2)、Max_Elev(冰川最大高程)、Min_Elev(冰川最小高程)、Mean_Elev(冰川平均高程)、MA_Elev(冰川中值面积高度)、Mean_Slp(冰川平均坡度)、Mean_Asp(冰川平均坡向)、Prm_Image(主要遥感数据)、Aux_Image(辅助遥感数据)、Rep_Date(冰川编目代表日期)、Elev_Src(高程数据源)、Elev_Date(高程代表日期)、Compiler(冰川编目编制者)、Verifier(冰川编目审验者)。 数据的详细情况见第二次冰川编目-数据说明。

    查看详情
  • 该数据集是“中国雪深长时间序列数据集(1978-2012)”的升级版本。 中国雪深长时间序列数据集(1979-2023)采用经纬度投影方式,数据为浮点型。数据集按年份存储,每个年份是一个压缩包,每个压缩包内包含每天的积雪深度文件。每天的雪深用一个txt文件存储,文件的名称为“yyyyddd.txt”,其中yyyy代表年,ddd代表Julian日期,雪深单位为厘米(cm)。比如2005001.txt就代表这个ASCII文件描述2005年第一天我国的积雪覆盖状况。数据集的ASCII码文件是由头文件和主体内容构成,头文件包括行数、列数、x-轴中心点坐标、y-轴中心点坐标、栅格大小、无数据区标值等6行描述信息组成,主体内容就是根据行数列数组成的二维数组,雪深单位为厘米(cm)。因为该数据集中的所有ASCII码文件所描述的空间为我国全国范围,所以这些文件的头文件是不变的,现将头文件摘录如下(其中xllcenter, yllcenter, cellsize单位为度): ncols 321 nrows 161 xllcenter 60 yllcenter 15 cellsize 0.25 NODATA_value -1。 该数据集是采用中国被动微波雪深反演算法Che算法,从星载被动微波亮度温度数据提取。星载被动微波亮度温度数据来自多个传感器,本数据采用的传感器包括Nimbus7上的SMMR(1979-1988),DMSP-F08,F11,F13上的SSMI(1988-2008),DMSP-F17上的SSMI/S(2009-2020),Aqua上的AMSR-E (2002-2011),GCOM-W1上的AMSR2 (2012-)。考虑到不同传感器之间的系统差异,在进行雪深反演前,已对对不同传感器进行了交叉订正。 数据包含三个压缩文件:daily snow depth _smmr_ssmis_China (1978-2020),daily snow depth _amsre_China(2002-2011),daily snow depth_amsr2_China(2012-2023)。第一个是从SMMR,SSMI,SSMI/S提取的1978-2020年逐日雪深,第二个是从AMSR-E提取的2002-2011年逐日雪深,第三个是从AMSR2提取的2012-2023年逐日雪深。从2021年开始SSMI/S数据与之前差异较大,因此,之后的数据不再根据SSMI/S数据更新。AMSR-E数据结束时间是2011年9月27日。AMSR2数据从2012年9月1日开始,目前仍在运行,今后将根据AMSR2数据继续更新中国长时间序列数据集。

    查看详情
  • 对未来气候变化的有效评价,特别是对未来降水量的预测,是制定适应战略的重要依据。本数据是基于RegCM4.6模型,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP2.6、RCP4.5、RCP6.0和RCP8.5)、HadGEM2-ES(RCP2.6、RCP4.5和RCP8.5)、IPSL-CM5A-LR(RCP2.6、RCP4.5、RCP6.0和RCP8.5)、MIROC5(RCP2.6、RCP4.5、RCP6.0和RCP8.5)和NorESM1-M(RCP2.6、RCP4.5、RCP6.0和RCP8.5)等多模型不同碳排放浓度情景下进行区域动力降尺度,获得2007-2099年空间分辨率为0.25度,时间分辨率分别为3小时(部分为6小时)、逐日和逐年的21套中国全境未来气候数据。

    查看详情