The map of desert distribution in 1:2,000,000 in China (1974)

Desertification is a kind of land degradation with aeolian sands as the main symbol caused by the uncoordinated human-land relationship in arid, semi-arid and some semi-humid regions of northern China. Data source: edited by the China Institute of Glacial and Frozen Desert and coordinated by the Institute of Geography of the Chinese Academy of Sciences. Based on aerial photographs from the 1970s and field research, a 1: 2 million desert map was drawn. Mapping of the 14 million "Map of the People's Republic of China" published in 1971. First, the data set content 1.Desert_Ch_2009 (desert distribution) 2.Dune_hight_Ch_200 (dune height) 3.Gobi_Ch_200 (Gobi) 4.Wind_eroded_land_Ch_200 (wind erosion data) The fields of the desertification attribute table are as follows: (1) Semifixed (semi-fixed dunes): undulating sandy land (2-1), thicket dunes (2-2), parabolic dunes (2-3), beam nest dunes (2-4), sand ridges And dendritic sand ridge (2-5), honeycomb sand dune (2-6), honeycomb sand ridge (2-7), composite sand ridge (2-8) (2) Fixation (fixed dune): flat sandy land (3-1), grassland bush (3-2), sand ridge (3-3), honeycomb sand dune (3-4) (3) Migratory: Crescent sand dunes and dune chains (1-1), Crescent sand ridges and dunes (1-2), Lattice dunes and Lattice dune chains (1-3), Fish scales Sand dunes (1-4), feathery dunes (1-5), pyramid dunes (1-6), composite dunes and dune chains (1-7), composite dunes (1-8), composite Dome-shaped dunes (1-9), chain-shaped sand hills (sand dunes) (1-10), stacked chain-shaped sand hills (1-11), compound ridge-shaped sand hills (1-12), composite chain-shaped Sand Mountain (1-13), Pyramid Sand Mountain (1-14) (4) class_id: encoding of desertification attributes Projection information PROJCS ["Albers", GEOGCS ["GCS_Beijing_1954", DATUM ["Beijing_1954", SPHEROID ["Krasovsky_1940", 6378245.0,298.3]], PRIMEM ["Greenwich", 0.0], UNIT ["Degree", 0.0174532925199433]], PROJECTION ["Albers_Conic_Equal_Area"], PARAMETER ["False_Easting", 0.0], PARAMETER ["False_Northing", 0.0], PARAMETER ["longitude_of_center", 105.0], PARAMETER ["Standard_Parallel_1", 25.0], PARAMETER ["Standard_Parallel_2", 47.0], PARAMETER ["latitude_of_center", 0.0], UNIT ["Meter", 1.0]]

The map of aeolian landform in Taklimakan desert (1978)

Ⅰ. this data Compilation: Lanzhou Desert Research Institute, Chinese Academy of Sciences Publication: Map Publishing House, Map Printing House Issue: Xinhua Bookstore Beijing Publishing House Ⅱ. The 1: 1.5 million Taklimakan Desert Aeolian Landform Map includes: 1. aeolian _ landform _ taklimakan _ 150 (aeolian landform) 2, height (dune height) 3, lake (lake) 4river1, 2, 3 (river), 5, road1, 2, 3 (road) Ⅲ. aeolian landform attribute fields: Aeolian_c (attribute), Aeolian_ (English control), Code (attribute code) Classification codes of geomorphic data attributes are as follows: (a), sand landform types 111. Ridge-shaped Compound Sand Mountain 112. Compound crescent dunes and dune chains 113. Pyramid dunes 114. Crescent dunes and dune chains 115, lattice sand dune and lattice sand dune chain 116, wind erosion residual hills 117. Compound Sand Ridge 118. Dome dunes 119. Fish Scale Sand Dunes 120, crescent sand ridges and linear sand ridges 121, red willow sandbags 122. Gobi (b) Sand dune height types 211, less than 10 meters 212, 10-25m 213, 25-50m 214, 50-100m 215, more than 100 meters (3) Other types 311, woodland and shrub forest 312. Artificial Oasis 313. Saline-alkali Land and Swamp Iv. projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000

County socio-economic statistical dataset of the Yellow River Upstream (2000-2005)

I. Overview This data set contains socio-economic statistics of counties (cities) in the upper reaches of the Yellow River from 2000 to 2005. The data set is divided into basic conditions, comprehensive economics, agriculture, industry and infrastructure, education, health and social security, 4 There are 30 basic categories, including all the socio-economic statistical indicators. Ⅱ. Data processing description The data is stored in excel format, classified by province, with basic socio-economic statistics for each county. Ⅲ. Data content description This data set contains four basic classifications, namely basic situation, comprehensive economy, agriculture, industry and infrastructure, education, health and social security. The basic information includes the administrative area, the number of townships (towns), the number of villagers' committees, the total number of households at the end of the year, the number of rural households, the rural population, the number of employees at the end of the year, the number of rural employees, and the number of agricultural, forestry, animal husbandry and sideline fishermen The total power of agricultural machinery and local telephone users; the total economic categories include: the value added of the primary industry, value added of the secondary industry, revenue within the local fiscal budget, fiscal expenditure, the balance of savings deposits of urban and rural residents, and loans of financial institutions at the end of the year Balance; major categories of agriculture, industry and capital construction include: grain output, cotton output, oil output, total meat output, number of industrial enterprises above designated size, total industrial output value above designated size, and capital investment completed; education, health and social security The major categories include the number of students in ordinary middle schools, the number of students in primary schools, the number of beds in hospitals and health centers, the number of beds in social welfare homes, and the number of beds in social welfare homes. In some remote areas, some data are missing. Ⅳ. Data usage description Through this data set, the socio-economic problems of counties (cities) in the upper reaches of the Yellow River can be analyzed, and the socio-economic driving forces of certain natural processes can be analyzed and researched through this data set.

Dataset of IWEMS (Integrated Wind-Erosion Modelling System) in the Kubuqi Desert

I. Overview This data set contains the terrain data, soil data, meteorological data, land use data, NDVI data, etc. required for the operation of the IWEMS model. All maps and relevant point coordinates (weather stations) use the isometric projection UTM / WGS94 coordinate system. Ⅱ. Data processing description All maps and related point coordinates (weather stations) use the isometric projection UTM / WGS84 coordinate system. Ⅲ. Data content description The data content mainly includes: The basic terrain data includes the Cuneiform Desert (DEM) and the river network. The river network is used as the boundary for wind and sand transmission. The size of the DEM grid is 250 * 250 m. The river network was extracted using the ASTER-GDEM terrain data with the river burning method. Soil data, including soil physics, chemistry, and spatial distribution of soil types. It is derived from 1: 1 million soil database of China and converted to ESRI-grid format with a grid size of 250 * 250 m. Meteorological data, including daily data from Baotou, Dongsheng and Linhe meteorological stations around the Kubuqi Desert, from 2002 to 2010. Includes precipitation, wind speed and wind direction data. Land use data, 2000 land use data, scale is 1: 100,000. Convert it to ESRI-grid format with a grid size of 250 * 250 m. Ⅳ. Data usage description Evaluate wind and sand hazards along the Yellow River, estimate the amount of wind and sand entering the upper reaches of the Yellow River, and provide data support for establishing an early warning system for wind and sand hazards in the region.

Dataset of ground truth of land surface evapotranspiration at regional scale in the Heihe River Basin (2012-2016) ETMap Version 1.0

Surface evapotranspiration (ET) is an important variable that connects the land energy balance, water cycle and carbon cycle. The accurate acquisition of ET is helpful to the research of global climate change, crop yield estimation, drought monitoring, and it is of great significance to regional and global water resource planning and management. The methods of obtaining evapotranspiration mainly include ground observation, remote sensing estimation, model simulation and assimilation. The high-precision surface evapotranspiration data can be obtained by ground observation, but the spatial representation of observation stations is very limited; remote sensing estimation, model simulation and assimilation methods can obtain the spatial continuous surface evapotranspiration, but there are problems in the verification of accuracy and the rationality of spatial-temporal distribution pattern. Therefore, this study makes full use of a large number of high-precision station observation data, combined with multi-source remote sensing information, to expand the observation scale of ground stations to the region, to obtain high-precision, spatiotemporal distribution of continuous surface evapotranspiration. Based on the "Heihe River Integrated Remote Sensing joint experiment" (water), "Heihe River Basin Ecological hydrological process integrated remote sensing observation joint experiment" (hiwater), the accumulated station observation data (automatic meteorological station, eddy correlator, large aperture scintillation instrument, etc.), 36 stations (65 station years, distribution map is shown in Figure 1) are selected in combination with multi-source remote sensing data (land cover) Five machine learning methods (regression tree, random forest, artificial neural network, support vector machine, depth belief network) were used to construct different scale expansion models of surface evapotranspiration, and the results showed that: compared with The other four methods, random forest method, are more suitable for the study of the scale expansion of surface evapotranspiration from station to region in Heihe River Basin. Based on the selected random forest scale expansion model, taking remote sensing and air driven data as input, the surface evapotranspiration time-space distribution map (etmap) of Heihe River Basin during the growth season (May to September) from 2012 to 2016 was produced. The results show that the overall accuracy of etmap is good. The RMSE (MAPE) of upstream (las1), midstream (las2-las5) and downstream (las6-las8) are 0.65 mm / day (18.86%), 0.99 mm / day (19.13%) and 0.91 mm / day (22.82%), respectively. In a word, etmap is a high-precision evapotranspiration product in Heihe River Basin, which is based on the observation data of stations and the scale expansion of random forest algorithm. Please refer to Xu et al. (2018) for all station information and scale expansion methods, and Liu et al. (2018) for observation data processing.

Dataset of near-surface air temperature lapse rates in the mainland China (1962-2011)

Land surface hydrological modeling is sensitive to near-surface air temperature, which is especially true for the cryosphere. The lapse rate of near-surface air temperature is a critical parameter when interpolating air temperature from station data to gridded cells. To obtain spatially distributed, fine-resolution near-surface (2 m) air temperature in the mainland China, monthly air temperature from 553 Chinese national meteorological stations (with continuous data from 1962 to 2011) are divided into 24 regional groups to analyze spatiotemporal variations of lapse rate in relation to surface air temperature and relative humidity. The results are as follows: (1) Evaluation of estimated lapse rate shows that the estimates are reasonable and useful for temperature-related analyses and modeling studies. (2) Lapse rates generally have a banded spatial distribution from southeast to northwest, with relatively large values on the Tibetan Plateau and in northeast China. The greatest spatial variability is in winter with a range of 0.3°C–0.9°C / 100m, accompanied by an inversion phenomenon in the northern Xinjiang Province. In addition, the lapse rates show a clear seasonal cycle. (3) The lapse rates maintain a consistently positive correlation with temperature in all seasons, and these correlations are more prevalent in the north and east. The lapse rates exhibit a negative relationship with relative humidity in all seasons, especially in the east. (4) Substantial regional differences in temporal lapse rate trends over the study period are identified. Increasing lapse rates are more pronounced in northern China, and decreasing trends are found in southwest China, which are more notable in winter. An overall increase of air temperature and regional variation of relative humidity together influenced the change of lapse rate. The dataset is represented in an Execel document, the annual and seasonal air temperate lapse rates are included.