English | Chinese
The routine meteorological observation data set of four times a day provided by the data management center of Heihe plan is adopted, including 13 stations. The daily evaporation was statistically sorted out, and the monthly evaporation data of 2000-2009 years was calculated. The spatial stability analysis is carried out to calculate the coefficient of variation. If the coefficient of variation is greater than 100%, the geographical weighted regression is used to calculate the relationship between the station and the geographical terrain factors, and the monthly evaporation distribution trend is obtained; if the coefficient of variation is less than or equal to 100%, the common least square regression is used to calculate the relationship between the station evaporation value and the geographical terrain factors (latitude, longitude, elevation, slope, aspect, etc.) After the trend is removed, the residuals are fitted and corrected by HASM (high accuracy surface modeling method). Finally, the monthly average evaporation distribution of the Heihe River Basin in 1961-2010 is obtained by adding the trend surface results and the residual correction results. Time resolution: monthly average evaporation in 2000-2009. Spatial resolution: 500M.
Select the soil mechanical composition data of 0-20cm depth of soil surface, select the optimal spatial prediction mapping method of soil composition data, and make the spatial distribution data product of soil texture (particle size composition). The American system classification is used as the standard of soil particle classification. The source data of this data set comes from the soil sampling data integrated by the data center of cold and dry areas and the major research plan integration project of Heihe River Basin (spatial interpolation and dynamic simulation analysis of vegetation and environmental elements in the upper reaches of Heihe River basin / approval No. 91325204).
Select the soil mechanical composition data with a depth of 0-20cm on the surface of the soil, select the optimal spatial prediction mapping method for soil composition data, and make the spatial distribution data product of soil texture (particle size composition). The classification standard of soil particle size is American classification. The source data of this data set are from the data center of cold and drought regions, soil physical properties-soil bulk density and mechanical composition data set soil sampling profile data of Tianlaochi watershed in Qilian mountain.
Adopt aster with 30 meter resolution provided by Heihe project data management center GDEM data and 90 meter resolution SRTM data are two sets of grid data, as well as multi-source point data. These point data include radar point cloud elevation data in the middle and upper reaches; elevation data extracted from soil sample points and vegetation sample in the data management center of Heihe plan; elevation data extracted from climate and hydrological stations; and elevation sample data measured by the research group. By using the HASM scaling up algorithm, the grid data of different sources and different precision are fused with the elevation point data to obtain the high-precision DEM data of Heihe River Basin. First of all, the accuracy of two groups of grid data is verified by using various point data. According to the results of accuracy verification, different grid data are used as the trend surface of data fusion in different regions. The residuals of various point data and trend surface are calculated, and the residual surface is obtained by interpolation with HASM algorithm, and the trend surface and residual surface are superposed to obtain the final DEM surface. The spatial resolution is 500 meters.
Two sets of grid data, aster GDEM data with a resolution of 30 meters and SRTM data with a resolution of 90 meters provided by the data management center of Heihe project, as well as point data from multiple sources, are used. By using the HASM scaling algorithm, the grid data of different sources and different precision are fused with the elevation point data to obtain the high precision slope data of Heihe River Basin. First of all, the accuracy of two groups of grid data is verified by using various point data. According to the results of accuracy verification, different grid data are used as the trend surface of data fusion in different regions. The residuals of various point data and trend surface are calculated, and the residual surface is obtained by interpolation with HASM algorithm, and the trend surface and residual surface are superposed to obtain the final slope surface. The spatial resolution is 500 meters.
Two sets of grid data, aster GDEM data with a resolution of 30 meters and SRTM data with a resolution of 90 meters provided by the data management center of Heihe project, as well as point data from multiple sources, are used. By using the HASM scaling up algorithm, the grid data of different sources and different precision are fused with the elevation point data to obtain the high precision slope direction data of Heihe River Basin. First of all, the accuracy of two groups of grid data is verified by using various point data. According to the results of accuracy verification, different grid data are used as the trend surface of data fusion in different regions. The residuals of various point data and trend surface are calculated, and the residual surface is obtained by interpolation with HASM algorithm, and the trend surface and residual surface are superposed to obtain the final slope surface. The spatial resolution is 500 meters.
The monthly precipitation data set of China's alpine mountains includes the qilian mountains (1960-2013), tianshan mountains (1954-2013) and Yangtze river source (1957-2014). The distributed hydrological model needs high-precision spatial distribution information of precipitation as input.Because of the scarcity of stations, the precipitation interpolation at stations cannot reflect the spatial distribution of precipitation in the alpine mountainous areas.Generation method of this dataset: (1) collect precipitation data of national meteorological stations and hydrological stations in various regions, and add precipitation observation data of field stations of Chinese academy of sciences above an altitude of 4000m; (2) use the temperature data of each station to correct the collected precipitation data of different precipitation types; (3) establish the relationship between precipitation data and altitude, longitude and latitude, and fit monthly to generate monthly precipitation data set of 1km scale. The interpolation year of this data is 1954-2014. The data projection method is Albers projection. The spatial interpolation precision is 1-km, and the time precision is monthly data.The results show that the interpolation precipitation is reliable. The data is stored in ASCII files. The file names of the monthly precipitation data files of tianshan mountain and Yangtze river source are in the form yyyymm.txt. YYYY is the year and MM is the month.The monthly precipitation data of qilian mountain is named as: month_10001.txt, this file is the precipitation data of January 1960, successively month_10002.txt is the precipitation of February 1960, and month_10013.txt is the precipitation data of January 1961,......Month_10648.txt represents the precipitation data for December 2013.Each ASCII file represents the grid precipitation data of the day in mm.
The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF;
Using digital soil mapping method to produce soil surface pH spatial distribution data products. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301).
This dataset is TM remote sensing data covers western China, around the 1980s. Data attributes: Pixel Size: 30-meter reflective: Bands 1-5 and 7 60-meter thermal: Band 6 Output Format: GeoTIFF Resampling method: cubic convolution (CC) Map Projection: UTM – WGS 84 Polar Stereographic for the continent of Antarctica. Image Orientation: Map (North Up) The data was partially downloaded from the USGS http://eros.usgs.gov/ website, and partly collected from various projects. The data folder is named the row and column number where the image is located. The folder contains TM 7 bands images (* .tif), header files (* .met, * .hdr) and thumbnails (jpg). The naming format of image files is row and column number _TM image mark (5t), and image acquisition time _ band number.
The output data of the distributed eco hydrological model (gbehm) in the upper reaches of Heihe River includes the spatial distribution data series of 1-km grid. Region: upper reaches of Heihe River (Yingluo gorge), temporal resolution: Monthly Scale, spatial resolution: 1km, period: 2015-2070 (future scenario). The data include precipitation, evapotranspiration, runoff depth and average temperature. All data are in ASCII format. Please refer to the basin.asc file in the reference directory for the spatial range of the basin. Projection parameters of model results: sphere_Arc_Info_Lambert_Azimuthal_Equal_Area
Firefox
Chrome
Contact Support
Links
Help
Follow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn