Glacier velocity of the Central Karakoram (Version 1.0) (1999-2003)

Under the background of global warming, mountain glaciers worldwide are facing strong ablation and retreat, but from existing field observations, it is found that most of the glaciers in the Karakorum region remain stable or are advancing, which is called the "Karakorum anomaly". Glacier surface velocity is an important parameter for studying glacier dynamics and mass balance. Studying the temporal and spatial variation characteristics of glacier velocity in central Karakorum is significant for understanding the dynamic characteristics of the glacier in this region and its response to climate change. Four pairs of Landsat 7 ETM+ images acquired in 1999 to 2003 (images acquired on 1999.7.16, 2000.6.16, 2001.7.21, 2002.8.9, 2002.4.19, 2003.3.21) were selected; using the panchromatic band with a resolution of 15 m, each pair of images was accurately registered, and then cross-correlation calculations were then performed on each image pair after registration to obtain the surface velocity of the glacier in the central Karakorum region from 1999 to 2003. Due to the lack of velocity observation data in the study area, the accuracy of the ice flow results is estimated using the offset value of the stable region, and the surface velocity error of the glacier is approximately ±7 m/year. The glacier velocity data dates are from 1999 to 2003, with a temporal resolution of one year. They cover the central Karakorum region, with a spatial resolution of 30 m. The data are stored as a GeoTIFF file every year. For details regarding the data, please refer to the data description.

Bacteria distribution in Tibetan soils (version 1.0) (2015)

The data set of bacterial diversity in Tibetan soil provides the microbial distribution characteristics of the soil surface (0-2 cm) of the Tibetan Plateau. The samples were collected from July 1st to July 15th, 2015, from three types of ecosystems: meadows, grasslands and desert. The soil samples were stored in ice packs and transported to the Ecological Laboratory of the Institute of Tibetan Plateau Research in Beijing. The DNA from the soil was extracted using an MO BIO Power Soil DNA kit. The soil surface samples were stored in liquid nitrogen after collection, shipped to the Sydney laboratory, and then extracted using a Fast Prep DNA kit. The extracted DNA samples adopted 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3') to amplify the 16S rRNA gene fragments. The amplified fragments were sequenced by the Illumina Miseq PE250 method, and the raw data were analyzed using Mothur software. The sequences with poor sequencing quality were first removed; the sequences were sorted, and the chimeric sequences were removed. The similarities between the sequences were then calculated, the sequences with similarities above 97% were clustered into one OTU, and the OTU representative sequence was defined. The OTU representative sequence was compared with the Silva database and identified as level one when the reliability exceeded 80%. The microbial diversities in these data on the Tibetan Plateau were systematically compared, which made them significant to the study of the microbial distribution on the Tibetan Plateau.

Bacteria strain resource database of the Tibetan Plateau (version 1.0) (2010-2018)

The glacial bacterial resource database of the Tibetan Plateau provides the bacterial 16S ribosomal RNA gene sequences of several glaciers, which are seven glaciers of the Tibetan Plateau separated by an experimental group led by Yongqin Liu during 2010 to 2018 (East Rongbuk Glacier of Mt. Qomolangma, Tianshan Glacier No.1, Guliya Glacier, Laohugou Glacier, Muztagh Ata Glacier, Qiyi Glacier and Yuzhufeng Glacier), the Malan Glacier separated by Shurong Xiang and the Puruogangri Glacier separated by Xinfang Zhang. After the glacier samples were collected, they were taken to the Ecological Laboratory of the Institute of Tibetan Plateau Research of the Chinese Academy of Sciences in Beijing and the National Cryosphere Laboratory in Lanzhou. After applying the spread plate method, the samples were cultured at different temperatures (4-25 °C) for 20 days to 90 days, and single colonies were picked out for purification. After the DNA was extracted from the isolated bacteria, the 16S ribosomal RNA gene fragment was amplified with 27F/1492R primer and sequenced using the Sanger method. The 16S ribosomal RNA gene sequence was compared with the RDP database using the "Classifier" software and identified as level one when the reliability exceeded 80%. These data contain the 16S ribosomal RNA gene fragment sequence and glacier sources of each sequence. Compared with sequences based on high-throughput sequencing, these data have a longer sequence and more accurate classification and can better serve in glacier microbiology research.