HiWATER: Dataset of Hydrometeorological observation network (eddy covariance system of Dashalong station, 2013)

This dataset contains the flux measurements from the Dashalong station eddy covariance system (EC) in the upper reaches of the Heihe hydrometeorological observation network from 12 August to 31 December, 2013. The site (98.941° E, 38.840° N) was located in the swamp meadow, Qilian County in Qilian Province. The elevation is 3739 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3 & Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

HiWATER: Dataset of hydrometeorological observation network (cosmic-ray soil moisture of Daman Superstation, 2017)

The data set contains observation data of cosmic-ray instrument (crs) from January 1, 2017 to December 31, 2017. The site is located in the farmland of Daman Irrigation District, Zhangye, Gansu Province, and the underlying surface is cornfield. The latitude and longitude of the observation site is 100.3722E, 38.8555N, the altitude is 1556 meters. The bottom of the instrument probe is 0.5 meter from the ground, and the sampling frequency is 1 hour. The original observation items of the cosmic-ray instrument include: voltage Batt (V), temperature T (°C), relative humidity RH (%), air pressure P (hPa), fast neutron number N1C (number / hour), thermal neutron number N2C (number / hour), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s). The data was released after being processed and calculated. The data includes: Date Time, P (pressure hPa), N1C (fast neutrons one/hour), N1C_cor (pressure-corrected fast neutrons one/hour) and VWC ( soil water content %), it was processed mainly by the following steps: 1) Data Screening There are four criteria for data screening: (1) Eliminating data with a voltage less than or equal to 11.8 volts ; (2) Eliminating data with a relative humidity greater than or equal to 80%; (3) Eliminating data with a sampling time interval not within 60 ± 1 minute; (4) Eliminating data with fast neutrons that vary by more than 200 in one hour. In addition, missing data is supplemented with -6999. 2) Air Pressure Correction The original data is corrected by air pressure according to the fast neutron pressure correction formula mentioned in the instrument manual, and the corrected fast neutron number N1C_cor is obtained. 3) Instrument Calibration In the process of calculating soil moisture, it is necessary to calibrate the N0 in the calculation formula. N0 is the number of fast neutrons under the situation with low antecedent soil moisture . Usually, soil samples in the source area are used to obtain measured soil moisture (or obtained by relatively dense soil moisture wireless sensors) θm (Zreda et al. 2012) and the fast neutron correction data N in corresponding time periods, then NO can be obtained by reversing the formula. Here, the instrument is calibrated according to the Soilnet soil moisture data in the source region of the instrument, and the relationship between the soil volumetric water content θv and the fast neutron is established. The data of June 26-27, and July 16-17, respectively, which have obvious differences in dry and wet conditions, were selected. The data from June 26 to 27 showed low soil moisture content, so the average of the three values of 4 cm, 10 cm and 20 cm was used as the calibration data, and the variation range was 22% to 30%; meanwhile , the data from July 16 to 17 showed high soil moisture content, so the average of the two values of 4cm and 10 cm was used as the calibration data, and the variation range was 28% - 39%, and the final average N0 was 3597. 4) Soil Moisture Calculation According to the formula, the hourly soil water content data is calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.

HiWATER: Dataset of hydrometeorological observation network (cosmic-ray soil moisture of Daman Superstation, 2016)

The data set contains cosmic ray instrument (CRS) observations from January 1, 2016 to December 31, 2016.The station is located in gansu province zhangye city da man irrigated area farmland, under the surface is corn field.The longitude and latitude of the observation point are 100.3722e, 38.8555n, and 1556m above sea level. The bottom of the instrument probe is 0.5m from the ground, and the sampling frequency is 1 hour. Original observations of cosmic ray instruments include: voltage Batt (V), temperature T (c), relative humidity RH (%), pressure P (hPa), fast neutron number N1C (hr), thermal neutron number N2C (hr), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s).The data published are processed and calculated. The data headers include Date Time, P (pressure hPa), N1C (fast neutron number/hour), N1C_cor (fast neutron number/hour with revised pressure) and VWC (soil volume moisture content %). The main processing steps include: 1) data filtering There are four criteria for data screening :(1) data with voltage less than and equal to 11.8 volts are excluded;(2) remove the data of air relative humidity greater than and equal to 80%;(3) data whose sampling interval is not within 60±1 minute are excluded;(4) the number of fast neutrons removed changed by more than 200 in one hour compared with that before and after.In addition, the missing data was supplemented by -6999. 2) air pressure correction According to the fast neutron pressure correction formula mentioned in the instrument instruction manual, the original data were revised to obtain the revised fast neutron number N1C_cor. 3) instrument calibration In the process of calculating soil moisture, N0 in the calculation formula should be calibrated.N0 is the number of fast neutrons under the condition of soil drying. The measured soil moisture (or through relatively dense soil moisture wireless sensor) m (Zreda et al. Here, according to Soilnet soil water data in the source area of the instrument, the instrument was calibrated to establish the relationship between soil volumetric water content v and fast neutrons.Selection of dry and wet conditions are the obvious difference of June 26, 2012-27 and July 16-17, four days of data, including June 26-27 rate data showed that soil moisture is small, so the selection of 4 cm, 10 and 20 cm as the rate of the three values of average data, its range is 22% 30%, and July 16-17 rate data showed that soil moisture is bigger, so select 4 cm and 10 cm as two value average rate data, the range of 28% - 39%, final N0 an average of 3597. 4) soil moisture calculation According to the formula, the hourly soil water content data were calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.

HiWATER: Dataset of Hydrometeorological observation network (cosmic-ray soil moisture of Daman Superstation, 2015)

The data set contains cosmic ray instrument (CRS) observations from January 1, 2015 to December 31, 2015.The station is located in dachman super station, dachman irrigation district, zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n, and 1556m above sea level. The bottom of the instrument probe is 0.5m from the ground, and the sampling frequency is 1 hour. Original observations of cosmic ray instruments include: voltage Batt (V), temperature T (c), relative humidity RH (%), pressure P (hPa), fast neutron number N1C (hr), thermal neutron number N2C (hr), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s).The data published are processed and calculated. The data headers include Date Time, P (pressure hPa), N1C (fast neutron number/hour), N1C_cor (fast neutron number/hour with revised pressure) and SW (soil volume moisture content %). The main processing steps include: 1) data filtering There are four criteria for data screening :(1) data with voltage less than and equal to 11.8 volts are excluded;(2) remove the data of air relative humidity greater than and equal to 80%;(3) data whose sampling interval is not within 60±1 minute are excluded;(4) the number of fast neutrons removed changed by more than 200 in one hour compared with that before and after.In addition, the missing data was supplemented by -6999. 2) air pressure correction According to the fast neutron pressure correction formula mentioned in the instrument instruction manual, the original data were revised to obtain the revised fast neutron number N1C_cor. 3) instrument calibration In the process of calculating soil moisture, N0 in the calculation formula should be calibrated.N0 is the number of fast neutrons under the condition of soil drying. The measured soil moisture (or through relatively dense soil moisture wireless sensor) m (Zreda et al. Here, according to Soilnet soil water data in the source area of the instrument, the instrument was calibrated to establish the relationship between soil volumetric water content v and fast neutrons.Selected dry wet condition are the obvious difference of June 26-27 and July 16-17, four days of data, including June 26-27 rate data showed that soil moisture is small, so the selection of 4 cm, 10 and 20 cm the three values of average as calibration data, the change range of 22% to 30%, and July 16-17 rate data showed that soil moisture is bigger, so select 4 cm and 10 cm as two value average rate data, the range of 28% - 39%, final N0 an average of 3597. 4) soil moisture calculation According to the formula, the hourly soil water content data were calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.

HiWATER: Dataset of hydrometeorological observation network (cosmic-ray soil moisture of Daman Superstation, 2014)

This data set contains cosmic ray instrument (CRS) observations from January 1, 2014 to December 31, 2014.The station is located in gansu province zhangye city da man irrigated area farmland, under the surface is corn field.The longitude and latitude of the observation point are 100.3722e, 38.8555n, and 1556m above sea level. The bottom of the instrument probe is 0.5m from the ground, and the sampling frequency is 1 hour. The original observations of the cosmic ray instrument (CRS1000B) included: voltage Batt (V), temperature T (c), relative humidity RH (%), pressure P (hPa), fast neutron number N1C (hr), thermal neutron number N2C (hr), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s).The data published are processed and calculated. The data headers include Date Time, P (pressure hPa), N1C (fast neutron number/hour), N1C_cor (fast neutron number/hour with revised pressure) and VWC (soil volume moisture content %). The main processing steps include: 1) data filtering There are four criteria for data screening :(1) data with voltage less than and equal to 11.8 volts are excluded;(2) remove the data of air relative humidity greater than and equal to 80%;(3) data whose sampling interval is not within 60±1 minute are excluded;(4) the number of fast neutrons removed changed by more than 200 in one hour compared with that before and after.In addition, the missing data was supplemented by -6999. 2) air pressure correction According to the fast neutron pressure correction formula mentioned in the instrument instruction manual, the original data were revised to obtain the revised fast neutron number N1C_cor. 3) instrument calibration In the process of calculating soil moisture, N0 in the calculation formula should be calibrated.N0 is the number of fast neutrons under the condition of soil drying. The measured soil moisture (or through relatively dense soil moisture wireless sensor) m (Zreda et al. (1) Where m is mass water content, N is the number of fast neutrons after revision, N0 is the number of fast neutrons under dry conditions, a1=0.079, a2=0.64, a3=0.37 and a4=0.91 are constant terms. Here, the instrument was calibrated according to Soilnet soil water data in the source area of the instrument, and the relationship between soil volumetric water content (v) and fast neutrons was established according to the actual situation. In formula (1), m was replaced by v.Selected dry wet condition are the obvious difference of June 26-27 June and July 16 - July 17 four days of data, including June 26-27 rate data showed that soil moisture is small, so the selection of 4 cm, 10 and 20 cm as the rate of the three values of average data, its range is 22% 30%, and July 16 - July 17 rate data showed that soil moisture is bigger, so select 4 cm and 10 cm as two value average rate data, the range of 28% - 39%,Finally, the average values of crs_a and crs_b, N0, were 3252 and 3597, respectively. 4) soil moisture calculation According to formula (1), the hourly soil water content data is calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.

The map of desert distribution in 1:2,000,000 in China (1974)

Desertification is a kind of land degradation with aeolian sands as the main symbol caused by the uncoordinated human-land relationship in arid, semi-arid and some semi-humid regions of northern China. Data source: edited by the China Institute of Glacial and Frozen Desert and coordinated by the Institute of Geography of the Chinese Academy of Sciences. Based on aerial photographs from the 1970s and field research, a 1: 2 million desert map was drawn. Mapping of the 14 million "Map of the People's Republic of China" published in 1971. First, the data set content 1.Desert_Ch_2009 (desert distribution) 2.Dune_hight_Ch_200 (dune height) 3.Gobi_Ch_200 (Gobi) 4.Wind_eroded_land_Ch_200 (wind erosion data) The fields of the desertification attribute table are as follows: (1) Semifixed (semi-fixed dunes): undulating sandy land (2-1), thicket dunes (2-2), parabolic dunes (2-3), beam nest dunes (2-4), sand ridges And dendritic sand ridge (2-5), honeycomb sand dune (2-6), honeycomb sand ridge (2-7), composite sand ridge (2-8) (2) Fixation (fixed dune): flat sandy land (3-1), grassland bush (3-2), sand ridge (3-3), honeycomb sand dune (3-4) (3) Migratory: Crescent sand dunes and dune chains (1-1), Crescent sand ridges and dunes (1-2), Lattice dunes and Lattice dune chains (1-3), Fish scales Sand dunes (1-4), feathery dunes (1-5), pyramid dunes (1-6), composite dunes and dune chains (1-7), composite dunes (1-8), composite Dome-shaped dunes (1-9), chain-shaped sand hills (sand dunes) (1-10), stacked chain-shaped sand hills (1-11), compound ridge-shaped sand hills (1-12), composite chain-shaped Sand Mountain (1-13), Pyramid Sand Mountain (1-14) (4) class_id: encoding of desertification attributes Projection information PROJCS ["Albers", GEOGCS ["GCS_Beijing_1954", DATUM ["Beijing_1954", SPHEROID ["Krasovsky_1940", 6378245.0,298.3]], PRIMEM ["Greenwich", 0.0], UNIT ["Degree", 0.0174532925199433]], PROJECTION ["Albers_Conic_Equal_Area"], PARAMETER ["False_Easting", 0.0], PARAMETER ["False_Northing", 0.0], PARAMETER ["longitude_of_center", 105.0], PARAMETER ["Standard_Parallel_1", 25.0], PARAMETER ["Standard_Parallel_2", 47.0], PARAMETER ["latitude_of_center", 0.0], UNIT ["Meter", 1.0]]

The map of aeolian landform in Taklimakan desert (1978)

Ⅰ. this data Compilation: Lanzhou Desert Research Institute, Chinese Academy of Sciences Publication: Map Publishing House, Map Printing House Issue: Xinhua Bookstore Beijing Publishing House Ⅱ. The 1: 1.5 million Taklimakan Desert Aeolian Landform Map includes: 1. aeolian _ landform _ taklimakan _ 150 (aeolian landform) 2, height (dune height) 3, lake (lake) 4river1, 2, 3 (river), 5, road1, 2, 3 (road) Ⅲ. aeolian landform attribute fields: Aeolian_c (attribute), Aeolian_ (English control), Code (attribute code) Classification codes of geomorphic data attributes are as follows: (a), sand landform types 111. Ridge-shaped Compound Sand Mountain 112. Compound crescent dunes and dune chains 113. Pyramid dunes 114. Crescent dunes and dune chains 115, lattice sand dune and lattice sand dune chain 116, wind erosion residual hills 117. Compound Sand Ridge 118. Dome dunes 119. Fish Scale Sand Dunes 120, crescent sand ridges and linear sand ridges 121, red willow sandbags 122. Gobi (b) Sand dune height types 211, less than 10 meters 212, 10-25m 213, 25-50m 214, 50-100m 215, more than 100 meters (3) Other types 311, woodland and shrub forest 312. Artificial Oasis 313. Saline-alkali Land and Swamp Iv. projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000

County socio-economic statistical dataset of the Yellow River Upstream (2000-2005)

I. Overview This data set contains socio-economic statistics of counties (cities) in the upper reaches of the Yellow River from 2000 to 2005. The data set is divided into basic conditions, comprehensive economics, agriculture, industry and infrastructure, education, health and social security, 4 There are 30 basic categories, including all the socio-economic statistical indicators. Ⅱ. Data processing description The data is stored in excel format, classified by province, with basic socio-economic statistics for each county. Ⅲ. Data content description This data set contains four basic classifications, namely basic situation, comprehensive economy, agriculture, industry and infrastructure, education, health and social security. The basic information includes the administrative area, the number of townships (towns), the number of villagers' committees, the total number of households at the end of the year, the number of rural households, the rural population, the number of employees at the end of the year, the number of rural employees, and the number of agricultural, forestry, animal husbandry and sideline fishermen The total power of agricultural machinery and local telephone users; the total economic categories include: the value added of the primary industry, value added of the secondary industry, revenue within the local fiscal budget, fiscal expenditure, the balance of savings deposits of urban and rural residents, and loans of financial institutions at the end of the year Balance; major categories of agriculture, industry and capital construction include: grain output, cotton output, oil output, total meat output, number of industrial enterprises above designated size, total industrial output value above designated size, and capital investment completed; education, health and social security The major categories include the number of students in ordinary middle schools, the number of students in primary schools, the number of beds in hospitals and health centers, the number of beds in social welfare homes, and the number of beds in social welfare homes. In some remote areas, some data are missing. Ⅳ. Data usage description Through this data set, the socio-economic problems of counties (cities) in the upper reaches of the Yellow River can be analyzed, and the socio-economic driving forces of certain natural processes can be analyzed and researched through this data set.

Dataset of IWEMS (Integrated Wind-Erosion Modelling System) in the Kubuqi Desert

I. Overview This data set contains the terrain data, soil data, meteorological data, land use data, NDVI data, etc. required for the operation of the IWEMS model. All maps and relevant point coordinates (weather stations) use the isometric projection UTM / WGS94 coordinate system. Ⅱ. Data processing description All maps and related point coordinates (weather stations) use the isometric projection UTM / WGS84 coordinate system. Ⅲ. Data content description The data content mainly includes: The basic terrain data includes the Cuneiform Desert (DEM) and the river network. The river network is used as the boundary for wind and sand transmission. The size of the DEM grid is 250 * 250 m. The river network was extracted using the ASTER-GDEM terrain data with the river burning method. Soil data, including soil physics, chemistry, and spatial distribution of soil types. It is derived from 1: 1 million soil database of China and converted to ESRI-grid format with a grid size of 250 * 250 m. Meteorological data, including daily data from Baotou, Dongsheng and Linhe meteorological stations around the Kubuqi Desert, from 2002 to 2010. Includes precipitation, wind speed and wind direction data. Land use data, 2000 land use data, scale is 1: 100,000. Convert it to ESRI-grid format with a grid size of 250 * 250 m. Ⅳ. Data usage description Evaluate wind and sand hazards along the Yellow River, estimate the amount of wind and sand entering the upper reaches of the Yellow River, and provide data support for establishing an early warning system for wind and sand hazards in the region.

Dataset of ground truth of land surface evapotranspiration at regional scale in the Heihe River Basin (2012-2016) ETMap Version 1.0

Surface evapotranspiration (ET) is an important variable that connects the land energy balance, water cycle and carbon cycle. The accurate acquisition of ET is helpful to the research of global climate change, crop yield estimation, drought monitoring, and it is of great significance to regional and global water resource planning and management. The methods of obtaining evapotranspiration mainly include ground observation, remote sensing estimation, model simulation and assimilation. The high-precision surface evapotranspiration data can be obtained by ground observation, but the spatial representation of observation stations is very limited; remote sensing estimation, model simulation and assimilation methods can obtain the spatial continuous surface evapotranspiration, but there are problems in the verification of accuracy and the rationality of spatial-temporal distribution pattern. Therefore, this study makes full use of a large number of high-precision station observation data, combined with multi-source remote sensing information, to expand the observation scale of ground stations to the region, to obtain high-precision, spatiotemporal distribution of continuous surface evapotranspiration. Based on the "Heihe River Integrated Remote Sensing joint experiment" (water), "Heihe River Basin Ecological hydrological process integrated remote sensing observation joint experiment" (hiwater), the accumulated station observation data (automatic meteorological station, eddy correlator, large aperture scintillation instrument, etc.), 36 stations (65 station years, distribution map is shown in Figure 1) are selected in combination with multi-source remote sensing data (land cover) Five machine learning methods (regression tree, random forest, artificial neural network, support vector machine, depth belief network) were used to construct different scale expansion models of surface evapotranspiration, and the results showed that: compared with The other four methods, random forest method, are more suitable for the study of the scale expansion of surface evapotranspiration from station to region in Heihe River Basin. Based on the selected random forest scale expansion model, taking remote sensing and air driven data as input, the surface evapotranspiration time-space distribution map (etmap) of Heihe River Basin during the growth season (May to September) from 2012 to 2016 was produced. The results show that the overall accuracy of etmap is good. The RMSE (MAPE) of upstream (las1), midstream (las2-las5) and downstream (las6-las8) are 0.65 mm / day (18.86%), 0.99 mm / day (19.13%) and 0.91 mm / day (22.82%), respectively. In a word, etmap is a high-precision evapotranspiration product in Heihe River Basin, which is based on the observation data of stations and the scale expansion of random forest algorithm. Please refer to Xu et al. (2018) for all station information and scale expansion methods, and Liu et al. (2018) for observation data processing.