Plant functional types map in China (1 km)

Vegetation functional type (PFT) is a combination of large plant species according to the ecosystem function and resource utilization mode of plant species. Each planting functional type shares similar plant attributes, which simplifies the diversity of plant species into the diversity of plant function and structure.The concept of vegetation-functional has been advocated by ecologists especially ecosystem modelers.The basic assumption is that globally important ecosystem dynamics can be expressed and simulated through limited vegetative functional types.At present, vegetation-functional model has been widely used in biogeographic model, biogeochemical model, land surface process model and global dynamic vegetation model. For example, the land surface process model of the national center for atmospheric research (NCAR) in the United States has changed the original land cover information into the applied vegetation-functional map (Bonan et al., 2002).Functional vegetation has been used in the dynamic global vegetation model (DGVM) to predict the changes of ecosystem structure and function under the global change scenario. 1. Functional classification system of vegetation 1 Needleleaf evergreen tree, temperate 2 Needleleaf evergreen tree, boreal 3 Needleleaf deciduous tree 4 Broadleaf evergreen tree, tropical 5 Broadleaf evergreen tree, temperate 6 Broadleaf deciduous tree, tropical 7 Broadleaf deciduous tree, temperate 8 Broadleaf deciduous tree, boreal 9 Broadleaf evergreen shrub, temperate 10 Broadleaf deciduous shrub, temperate 11 Broadleaf deciduous shrub, boreal 12 C3 grass, arctic 13 C3 grass 14 C4 grass 15 Crop 16 Permanent wetlands 17 Urban and built-up lands 18 Snow and ice 19 Barren or sparsely vegetated lands 20 Bodies of water 2. Drawing method China's 1km vegetation function map is based on the climate rules of land cover and vegetation function conversion proposed by Bonan et al. (Bonan et al., 2002).Ran et al., 2012).MICLCover land cover map is a blend of 1:100000 data of land use in China in 2000, the Chinese atlas (1:10 00000) the type of vegetation, China 1:100000 glacier map, China 1:10 00000 marshes and MODIS land cover 2001 products (MOD12Q1) released the latest land cover data, using IGBP land cover classification system.The evaluation shows that it may be the most accurate land cover map on the scale of 1km in China.Climate data is China's atmospheric driven data with spatial resolution of 0.1 and temporal resolution of 3 hours from 1981 to 2008 developed by he jie et al. (2010).The data incorporates Princeton land-surface model driven data (Sheffield et al., 2006), gewex-srb radiation data (Pinker et al., 2003), TRMM 3B42 and APHRODITE precipitation data, and observations from 740 meteorological stations and stations under the China meteorological administration.According to the evaluation results of RanYouhua et al. (2010), GLC2000 has a relatively high accuracy in the current global land cover data set, and there is no mixed forest in its classification system. Therefore, the mixed forest in the MICLCover land cover diagram USES GLC2000 (Bartholome and Belward, 2005).The information in xu wenting et al., 2005) was replaced.The data can be used in land surface process model and other related researches.

The function and mechanism data of lignin sand fixation in Ningxia straw pulp papermaking wastewater (August 2005)

The research project on the function and mechanism of sand-fixing afforestation of waste lignin from straw pulp and paper making belongs to the national natural science foundation of China "environment and ecological science in western China" major research program, led by wang hanjie, a researcher of the institute of aviation meteorology and chemical protection, air force equipment research institute. The project ran from January 2004 to December 2006 Remittance data of the project: 1. 2005-08-10 - sand lake - jinsha wan test site image (JPG) 2.2006 field picture of fixed sand test (JPG) 3. Meteorological data of ningxia jinshawan meteorological station (TXT text) Observation data including dry bulb temperature, wet bulb temperature, 0, 5, 10, 15, 20cm ground temperature, evaporation and air temperature were observed at 8:00,14:00 and 20:00 on August 13, 2005 4. Growth data of jinshawan community in ningxia (TXT text) The data of crown diameter and height of four samples are included. 5. Soil water data of jinshawan, ningxia (excel) Soil moisture data of 16 samples at depths of 20CM and 12CM in clear water control area and lignin spraying area by 2 hours in the daytime on August 19, 2005. 6. Soil water data of shahu lake in ningxia (excel) On August 10,11, 2005, soil moisture data of various depths of 10CM,12CM and 20CM were obtained 7. Plant growth data of sand fixation community in shahu, ningxia (excel) Plant growth statistics of 5 sample plots: species name,x,y, base, crown, height, number of plants.

The HWSD soil texture dataset of the Heihe river basin (2009)

The data set is the HWSD soil texture data set in the Tarim River Basin. The data comes from the Harmonized World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and the Vienna International Institute for Applied Systems (IIASA). Version 1.1 was released on March 26, The data resolution is 1km. The soil classification system used is mainly FAO-90. The main fields of the soil attribute table include: SU_SYM90 (the soil name in the FAO90 soil classification system) SU_SYM85 (FAO85 classification) T_TEXTURE (top soil texture) DRAINAGE (19.5); ROOTS: String (depth classification to the bottom of the soil); SWR: String (Soil moisture content characteristics); ADD_PROP: Real (specific soil type related to agricultural use in the soil unit); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA soil texture classification); T_REF_BULK: Real (soil bulk weight); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cations in the clay layer soil) Exchange capacity); T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate Content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field beginning with T_ indicates the upper soil attribute (0-30cm), and the attribute field beginning with S_ indicates the lower soil attribute (30-100cm) (FAO 2009).