典型年三极冰雪微生物后处理产品收集了2010-2018年期间南北极以及青藏高原地区冰川、冰川雪和冰里采样细菌分析结果。通过整理归纳汇总得到三极区域土壤微生物后处理数据产品,数据格式为excel,方便用户查看。其中南北极和青藏高原地区冰川雪和冰里原核为刘勇勤老师实验组在2010-2018年间从NCBI数据库收集的细菌16S核糖体RNA基因序列。收集的序列通过使用DOTOUR软件计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过“Classifier”软件与RDP数据库进行比对,在可靠性大于80%的情况下鉴定到属一级水平;青藏高原冰川采集时间为2010-2018年间,包含刘勇勤老师实验组分离的青藏高原7条冰川(珠峰东绒布冰川,天山一号冰川,古里雅冰川,老虎沟冰川,木孜塔格冰川,七一冰川和玉珠峰冰川),向述荣老师分离的马兰冰川和张新芳老师分离的若岗日冰川的细菌16S核糖体RNA基因序列。冰川样品采集后带回北京青藏高原院研究所生态实验室和兰州冰冻圈国家实验室,涂布平板后于不同温度下(4-25摄氏度)培养20天-90天并挑取单菌落纯化。分离的细菌提取DNA后以27F/1492R引物扩增16S核糖体RNA基因片段,并使用Sanger法测序。16S核糖体RNA基因序列通过“Classifier”软件与RDP数据库进行比对,在可靠性大于80%的情况下鉴定到属一级水平。
叶爱中
典型年三极土壤微生物后处理产品收集了2005-2006年期间南北极地区土壤采样细菌分布分析结果和2015年期间青藏高原地区土壤采样细菌分布分析结果。通过整理归纳汇总得到三极区域土壤微生物后处理数据产品,数据格式为excel,方便用户查看。其中南北极地区样品采集时间为2005年12月13日至2006年12月8日,包含北极3个地区52个样品(Spitsbergen Slijeringa,Spitsbergen Vestpynten,及Alexandra Fjord Highlands),南极5个地区171个样品(Mitchell Peninsula,Casey station main power house, Robinsons Ridge,Herring Island,Browning Peninsula);青藏高原采集时间为2015年7月1日至7月15日,包含草甸,草原,荒漠3种生态系统,共计18个采样点位,每个采样点位样品个数为3-5个。采样点降水、气温和干旱度由气象信息估算得到,供读者参考。土壤表层样品采集后用液氮保存,运回悉尼实验室,通过FastPrep DNA试剂盒提取。提取后的DNA样品使用27F(5'-GAGTTTGATCNTGGCTCA-3')和 519R (5'-GTNTTACNGCGGCKGCTG-3')扩增16S rRNA基因片段。扩增后的片段通过454方式测序,原始数据通过Mothur软件分析。首先去除测序质量不佳序列,之后进行排序并去除嵌合体序列。之后计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过与Silva数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。
叶爱中
积雪面积比例(fractional snow cover, FSC)是单位像元内积雪覆盖面积(Snow Cover Area SCA)与单位像元面积的比值。本数据集的制作方法为BV-BLRM积雪面积比例线性回归经验模型;采用的源数据为MOD09GA 500米全球逐日地表反射率产品,以及MOD09A1 500m的8天合成全球地表反射率产品;制作平台使用的是Google Earth Engine;数据范围为全球范围,数据制备时间为2000至2021年,空间分辨率为500米,时间分辨率为逐年。该套数据可为区域气候模拟、水文模型等提供积雪分布的定量信息。
马媛
若尔盖湿地观测点始海拔 3435 米,位于四川省若尔盖县花湖湿地(102°49′09″E, 33°55′09″N),下垫面为典型的高寒泥炭沼泽湿地,植被、水体和泥炭层发育良好。本数据集为2017-2019年若尔盖湿地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射。
孟宪红, 李照国
玛曲草地观测点始建于 2005 年,海拔 3434 米,位于距离玛曲县城以南约 18公里的河曲马场(102°08′45″E,33°51′50″N),下垫面为典型的发育良好的高寒草原,属于季节性冻土区。本数据集为2017-2020年黄河源区玛曲草地观测站点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
采用WRF4.1.1模式制备的青藏高原高分辨率大气-水文模拟数据集,格点数为191*355,空间分辨率9km,覆盖范围如图1所示,时间分辨率为3h,模拟时采用的主要参数化方案包括:Thompson微物理方案、RRTM长波辐射方案、Dudhia短波辐射方案、MYJ边界层方案、Noah陆面过程方案。数据的时间跨度为2000-2010年,变量包括:降水(Rain),地面2m高度的温度(T2)和湿度(Q2),地表温度(TSK)、地面气压(PSFC)、地面上10m风场的纬向分量(U10)、地面上10m风场的经向分量(V10)。地表向下的长波通量(GLW)、地表向下短波通量(SWDOWN)、地表热通量(GRDFLX)、感热通量(HFX)、潜热通量(LH)、地表径流(SFROFF)、地下径流(UDROFF)等。该数据可有效支撑青藏高原地区区域气候特征及气候变化研究。
孟宪红, 马媛媛
鄂陵湖是青藏高原最大的淡水湖泊,与邻近的扎陵湖一起构成了黄河源头的“姊妹湖”,并入选了国际重要湿地名录,也是三江源国家公园的核心区。本数据集为中国科学院若尔盖高原湿地生态系统研究站2017-2020年黄河源区鄂陵湖草地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度(2020年为比湿)、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
植被指数(NDVI, Normalized Difference Vegetation Index)可以准确反映地表植被覆盖状况。目前,基于SPOT/VEGETATION以及MODIS等卫星遥感影像得到的NDVI时序数据已经在各尺度区域的植被动态变化监测、土地利用/覆被变化检测、宏观植被覆盖分类和净初级生产力估算等研究中得到了广泛的应用。EVI类似于归一化差异植被指数(NDVI),可用于量化植被绿度。然而,EVI对一些大气条件和树冠背景噪声进行了校正,并且在植被茂密的地区更为敏感。它包含一个“L”值来调整树冠背景,“C”值作为大气阻力系数,以及来自蓝色波段(B)的值。这些增强功能允许将指数计算R和NIR值之间的比率,同时在大多数情况下降低背景噪声、大气噪声和饱和度。本研究工作主要是对NDVI和EVI数据进行后处理,通过转换投影坐标系、数据融合、最大值合成法、剔除异常值和剪裁后给出较为可靠的2013年和2018年的青藏高原的植被情况。
叶爱中
植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。本研究工作主要是对两套GLASS FVC数据进行后处理,通过数据融合、剔除异常值和剪裁后给出较为可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被覆盖度情况。
叶爱中
NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关。是反映农作物长势和营养信息的重要参数之一。根据该参数,可以知道不同季节的农作物对氮的需求量, 对合理施用氮肥具有重要的指导作用。植被修正指数Correct NDVI (C-NDVI) 是剔除气候要素(气温、降水等)对NDVI的影响后的NDVI的值。以降水为例,降水对植被生长影响的滞后效应的研究表明,不同地区由于植被组成和土壤类型的差异,降水影响的滞后时间不同。本研究工作主要是对MODIS NDVI数据进行后处理,首先将当月NDVI值与本月的降水量、本月与上月的降水量的平均值、本月与上两个月的降水量的平均值等分别进行相关分析,确定最优的滞后时间。将NDVI与降水和气温做回归分析,得到相关的系数,然后通过MODIS NDVI与气候因子回归的NDVI的差值计算出校正的NDVI值。我们利用气候数据对NDVI进行修正后给出可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被修正指数。数据空间分辨率为0.5度,时间分辨率为月度值。
叶爱中
南极半岛植被数据来源于时空三级环境大数据平台的南极先锋植被覆盖分类数据,通过实测光谱匹配遥感影像,应用纯像元PPI提取出苔藓、地衣、岩石、海、积雪的端元波谱和应用线性混合模型LMM(Linear Mixture Model)计算得到。菲尔德斯半岛特色植被覆盖度根据其与丰度的相关线性关系获得。数据格式为geotiff格式。数据内容是南极半岛典型年典型区植被覆盖度。本研究工作通过对南极半岛典型区典型年植被覆盖度后处理后生成tif栅格格式产品,栅格主体数值为植被盖度。本研究得到的南极半岛典型区植被覆盖度是将南极先锋植物丰度数据产品进行镶嵌,包括南极半岛及周边植物丰度数据产品。通过ArcGIS将南极半岛典型区域包括Adley,北部和南部镶嵌在一起,得到包括2008年、2017年和2018年的光谱角匹配法(SAM)和光谱信息散度法(SID)识别出的6幅植被覆盖度图。
叶爱中
三极多年冻土活动层厚度融合了两套数据产品,主要参考数据为通过GCM模型模拟生成的1990-2015年活动层厚度逐年值。本数据集的数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。参考校正数据集为利用统计和机器学习(ML)方法模拟得到2000-2015年的活动层厚度平均值,数据格式为GeoTIFF格式,空间分辨率为0.1°,数据单位为m。本研究工作通过对两套数据进行数据格式转换、空间插值、数据校正等后处理操作,生成了NetCDF4格式的多年冻土活动层厚度数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为1990-2015年,数据单位为cm。
叶爱中
三极多年冻土区碳通量原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据包括青藏高原多年冻土区NPP和GPP等表征碳通量的参数,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土区NPP和GPP数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,数据单位为gc/m2yr。
叶爱中
三极多年冻土活动层厚度原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据内容是青藏高原冻土区活动层厚,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土区活动层厚度,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,单位为cm。
叶爱中
三极多年冻土范围原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据内容是青藏高原的永久冻土和季节冻土的空间范围,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土范围数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,多年冻土用1表示,季节冻土用0表示。
叶爱中
青藏高原被誉为“亚洲水塔”,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。准确估算青藏高原的径流,揭示径流的变化规律,有利于高原及周边地区的水资源管理和灾害风险规避。青藏高原五大河源区冰川径流分割数据集覆盖时间从1971年到2015年,时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为流域,以多源遥感和实测数据为基础使用耦合了冰川模块的分布式水文模型VIC-CAS模拟获得,使用站点实测数据对模拟结果进行了验证,其所有数据进行了质量控制。
王世金
北极多年冻土区作为全球碳库的重要组成部分,是全球气候变化最敏感的区域之一。北极地区变暖的速度是全球平均速度的两倍,引发北极多年冻土的快速变化。1982-2015北半球不同类型多年冻土区NDVI变化数据集,时间分辨率为每5年一期,覆盖范围为整个环北极国家,空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态学方法结合,量化了北半球多年冻土对生态系统的调节服务功能,其所有数据进行了质量控制。
王世金
青藏高原被誉为“亚洲水塔”,是东南亚众多河流的源区,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。青藏高原五大河源区冰川径流数据集覆盖时间从2005年到2010年,时间分辨率为每5年一期,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为1km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态经济学方法结合,量化了江河源区冰冻圈水资源服务的价值,其所有数据进行了质量控制。
王世金
本产品提供了基于陆面模式VIC预估的未来2018-2065年的北极主要大河流域的月径流、蒸散发以及土壤水。空间精度为10km。北极主要大河流域包括Lena、Yenisey、Ob、Kolyma、Yukon和Mackenzie流域。根据IPCC第五次评估报告中CMIP5中IPSL-CM5A-LR模式提供的RCP2.6(低排放强度)和RCP8.5(高排放强度)情景结果,通过统计降尺度获取的适用于北极地区0.1°的未来气候情景驱动数据。应用在全球尺度校准后的陆面水文模型VIC,基于0.1°的未来气候情景驱动数据,预估获得未来气候变化下本世纪中叶北极大河流域径流、土壤水及蒸散发的月尺度时间序列。
唐寅, 汤秋鸿, 王宁练, 吴玉伟
不同相态降水(降雪、雨夹雪和降雨)对地表水循环和能量收支产生不同性质影响。因此,对不同相态降水进行区分至关重要,特别是在气候变化背景下。基于Ding et al.(2014)提出的不同相态降水分离参数化方案和基于观测的逐日格点数据集(CN05.1),以湿球温度、相对湿度、地表气压和高程数据作为输入,我们生成了一套1961-2016年期间中国区域不同相态降水(降雪、雨夹雪和降雨)及其湿球温度阈值的逐日格点数据集,空间分辨率为0.25°。在此基础上,进一步计算了逐年降雪、雨夹雪和降雨总量。该数据可为冰冻圈科学、水文学、生态学和气候变化相关研究提供基础数据。
苏勃, 赵宏宇
山地冰川是中国西部及其周边地区重要的淡水资源。由于冰川融水在流域尺度为生态和社会经济用水提供补给,因此,确定冰川作用(补给)流域是开展冰川水资源供给功能和服务研究的基础。基于Randolph Glacier Inventory 6.0、中国历次冰川编目、中国三级流域边界数据(中国科学院资源与环境科学数据中心提供)和全球流域边界数据HydroBASINS(www.hydrosheds.org),通过将冰川分布数据与流域边界数据进行相交分析,生成了20世纪50年代至21世纪20年代(至今)(1)中国两级冰川作用流域边界、(2)中国冰川作用的国际河流流域边界以及(3)亚洲高山区冰川作用流域边界数据。该数据兼顾了中国和全球常用流域边界,并将二者很好匹配,以期为中国及其周边地区冰川水资源研究提供基础数据。
苏勃
该数据集包含了2021年7月22日至2021年9月5日的黑河水文气象观测网中游大满超级站叶面积指数观测数据。站点(100.376° E, 38.853° N)位于甘肃省张掖市大满灌区内,海拔1556m,下垫面是玉米。观测样方共计3个,每个样方大小约30m×30m,经纬度分别为(100.374°E, 38.855°N)、(100.371° E, 38.854°N)、(100.369°E, 38.854°N)。每个样方内布设4个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并5天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
刘绍民, 车涛, 屈永华, 徐自为, 谭俊磊, 李新
该数据集包含2021年5月2日至12月26日黑河流域地表过程综合观测网下游四道桥超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 车涛, 徐自为, 任志国, 李新
该数据集包含2021年1月1日至12月31日黑河流域地表过程综合观测网中游大满超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集为相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 车涛, 徐自为, 谭俊磊, 任志国, 李新
该数据集包含2021年1月1日至12月31日黑河流域地表过程综合观测网中游阿柔超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 车涛, 徐自为, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日黑河流域地表过程综合观测网上游阿柔超级站宇宙射线观测系统数据。站点位于内蒙古额济纳旗四道桥,下垫面是柽柳。观测点的经纬度是101.1374° E, 42.0012° N,海拔873 m。仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。剔除及缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
刘绍民, 车涛, 朱忠礼, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日黑河流域地表过程综合观测网中游大满超级站宇宙射线观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.372° E, 38.856° N,海拔1556m。仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。剔除及缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
刘绍民, 车涛, 朱忠礼, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日黑河流域地表过程综合观测网上游阿柔超级站宇宙射线观测系统数据。站点位于青海省祁连县阿柔乡草达坂村,下垫面是亚高山山地草甸。观测点的经纬度是100.4643° E, 38.0473° N,海拔3033m。仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。剔除及缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
刘绍民, 车涛, 朱忠礼, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了黑河流域地表过程综合观测网下游四道桥站的大孔径闪烁仪通量观测数据。下游四道桥站分别架设了BLS450和BLS900型号的大孔径闪烁仪,北塔为接收端,南塔为发射端。观测时间为2021年1月1日至2021年12月31日。站点位于内蒙古额济纳旗,下垫面是柽柳、胡杨、裸地和耕地。北塔的经纬度是101.137E,42.008N,南塔的经纬度是101.131E,41.987N,海拔高度约873m。大孔径闪烁仪的有效高度25.5m,光径长度是2350m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS900&BLS450:Cn2>7.25E-14);(2)剔除解调信号强度较弱的数据(BLS900&BLS450:Average X Intensity<1000);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS900&BLS450,选取Thiermann and Grassl(1992)的稳定度普适函数;详细介绍请参考Liu et al. (2011, 2013)。由于仪器故障,大孔径闪烁仪数据缺失的日期为:2021.03.15-2021.03.18;2021.9.12-2021.9.18。 关于发布数据的几点说明:(1)下游LAS数据以BLS900为主,其次为BLS450,最终缺失时刻以-6999标记。(2)数据表头:Date/Time :日期/时间(格式:yyyy/m/d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H:感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xlsx格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了黑河流域地表过程综合观测网中游大满站的大孔径闪烁仪通量观测数据。中游大满站分别架设了BLS900和RR-RSS460型号的大孔径闪烁仪,北塔为BLS900的接收端和RR-RSS460的发射端,南塔为BLS900的发射端和RR-RSS460的接收端。观测时间为2021年1月1日至2021年12月31日。站点位于甘肃省张掖市大满灌区内,下垫面是玉米、果园和大棚,以玉米为主。北塔的经纬度是100.3785E,38.8607N,南塔的经纬度是100.3685E,38.8468N,海拔高度约1556m。大孔径闪烁仪的有效高度24.1m,光径长度是1854m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS900:Cn2>7.25E-14,RR-RSS460:Cn2>7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS900:Average X Intensity<1000;RR-RSS460:Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS900,选取Thiermann and Grassl(1992)的稳定度普适函数;对于RR-RSS460,选取Andreas(1988)的稳定度普适函数,详细介绍请参考Liu et al. (2011, 2013)。由于仪器维修、供电不足和信号问题,大孔径闪烁仪数据缺失的日期为: 2021.05.15-2021.06.10。 关于发布数据的几点说明:(1)中游LAS数据以BLS900为主,缺失时刻由RR-RSS460观测补充,两者都缺失则以-6999标记。(2)数据表头:Date/Time :日期/时间(格式:yyyy/m/d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H:感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xlsx格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了黑河流域地表过程综合观测网上游阿柔站的大孔径闪烁仪通量观测数据。上游阿柔站分别架设了BLS900和RR-RSS460型号的大孔径闪烁仪,北塔为RR-RSS460的接收端和BLS900的发射端,南塔为RR-RSS460的发射端和BLS900的接收端。观测时间为2021年1月1日至2021年12月31日。站点位于青海省祁连县阿柔乡草达坂村,下垫面是高寒草地。北塔的经纬度是100.4712E,38.0568N,南塔的经纬度是100.4572E,38.0384N,海拔高度约3033m。大孔径闪烁仪的有效高度13.0m,光径长度是2390m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS900:Cn2>7.25E-14,RR-RSS460:Cn2>7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS900:Average X Intensity<1000;RR-RSS460:Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS900,选取Thiermann and Grassl(1992)的稳定度普适函数;对于RR-RSS460,选取Andreas(1988)的稳定度普适函数,详细介绍请参考Liu et al. (2011, 2013)。 关于发布数据的几点说明:(1)上游LAS数据以BLS900为主,缺失时刻由RR-RSS460观测补充,两者都缺失则以-6999标记。(2)数据表头:Date/Time :日期/时间(格式:yyyy/m/d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H :感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xlsx格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了2021年1月1日至2021年12月31日黑河流域地表过程综合观测网中游张掖湿地站气象要素观测数据。站点位于甘肃省张掖市国家湿地公园,下垫面是芦苇湿地。观测点的经纬度是100.4464E, 38.9751N,海拔1460m。空气温度、相对湿度传感器架设在5m、10m处,朝向正北;气压计安装在2m处;翻斗式雨量计安装在10m处;风速传感器架设在5m、10m处,风向传感器架设在10m处,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处;四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在6m(探头垂直向上和向下方向各一个)、冠层内安装在0.25m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:空气温湿度(Ta_5m、RH_5m、Ta_10m、RH_10m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_5m、WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm)(单位:摄氏度)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30;(6)命名规则为:AWS+站点名称 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日黑河流域地表过程综合观测网上游垭口站气象要素观测数据。站点位于青海省祁连县大冬树垭口,下垫面是高寒草甸。观测点的经纬度是100.2421E, 38.0142N,海拔4148m。发布的数据包括空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在2m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪在气象塔6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处;土壤热流板埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:体积含水量,百分比)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-9-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了2021年1月1日至2021年12月31日黑河流域地表过程综合观测网下游四道桥超级站气象要素梯度观测系统数据。站点位于内蒙古额济纳旗达来呼布镇四道桥,下垫面是柽柳。观测点的经纬度是101.1374E, 42.0012N,海拔873m。空气温度、相对湿度、风速传感器分别架设在5m、7m、10m、15m、20m、28m处,共6层,朝向正北;风向传感器架设在15m处,朝向正北;气压计安装在防水箱内;翻斗式雨量计安装在28m处;四分量辐射仪安装在10m处,朝向正南;两个红外温度计安装在10m处,朝向正南,探头朝向是垂直向下;两个光合有效辐射仪安装在10m处,朝向正南,探头垂直向上和向下方向各一个;土壤部分传感器安装在塔体南侧2m处,其中土壤热流板(自校正式)(3块)依次埋设在地下6cm处;平均土壤温度传感器TCAV埋设在地下2cm、4cm处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm、160cm和200cm处;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm、160cm和200cm处。 观测项目有:风速(WS_5m、WS_7m、WS_10m、WS_15m、WS_20m、WS_28m)(单位:米/秒)、风向(WD_15m)(单位:度)、空气温湿度(Ta_5m、Ta_7m、Ta_10m、Ta_15m、Ta_20m、Ta_28m和RH_5m、RH_7m、RH_10m、RH_15m、RH_20m、RH_28m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上和向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm、Ms_200cm)(单位:体积含水量,百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm、Ts_200cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-9-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日黑河流域地表过程综合观测网上游景阳岭站气象要素观测数据。站点位于青海省祁连县景阳岭垭口,下垫面是高寒草甸。观测点的经纬度是101.1160E, 37.8384N,海拔3750m。空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在10m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;由于传感器问题,6-8月风速风向出现较多NAN无效值。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-9-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了2021年1月1日至2021年12月31日黑河流域地表过程综合观测网下游混合林站气象要素观测数据。站点位于内蒙古额济纳旗达来呼布镇四道桥,下垫面是胡杨与柽柳。观测点的经纬度是101.1335E, 41.9903N,海拔874m。空气温度、相对湿度传感器架设在28m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在28m处;风速与风向传感器架设在28m,朝向正北;四分量辐射仪安装在24m处,朝向正南;两个红外温度计安装在24m处,朝向正南,探头朝向是垂直向下;两个光合有效辐射仪安装在24m处,朝向正南,探头垂直向上和向下方向各一个;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、60cm、100cm、160cm、200cm和240cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下2cm、4cm、10cm、20cm、40cm、60cm、100cm、160cm、200cm和240cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_28m、RH_28m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_28m)(单位:米/秒)、风向(WD_28m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_20cm、Ts_40cm、Ts_60cm、Ts_100cm、Ts_160cm、Ts_200cm、Ts_240cm)(单位:摄氏度)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_60cm、Ms_100cm、Ms_160cm、Ms_200cm、Ms_240cm)(单位:体积含水量,百分比)、向上与向下光合有效辐射(PAR_up、PAR_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30;(6)命名规则为:AWS+站点名称 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日黑河流域地表过程综合观测网下游荒漠站气象要素观测数据。站点位于内蒙古额济纳旗荒漠滩,下垫面是红砂荒漠。观测点的经纬度是100.9872E, 42.1135N,海拔1054m。空气温度、相对湿度传感器架设在5m、10m处,朝向正北;气压计安装防水箱内;翻斗式雨量计安装在10m处;风速传感器架设在5m、10m处,风向传感器架设在10m处,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、60cm和100cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、60cm和100cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处。 观测项目有:空气温湿度(Ta_5m、RH_5m、Ta_10m、RH_10m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_5m、WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_60cm、Ms_100cm)(单位:体积含水量,百分比)和土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_60cm、Ts_100cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30;(6)命名规则为:AWS+站点名称 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日黑河流域地表过程综合观测网中游花寨子荒漠站气象要素观测数据。站点位于甘肃省张掖市花寨子,下垫面是盐爪爪山前荒漠。观测点的经纬度是100.3201E, 38.7659N,海拔1731m。空气温度、相对湿度传感器架设在5m、10m处,朝向正北;气压计安装防水箱内;翻斗式雨量计安装在10m处;风速风向传感器架设在5m、10m处,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、60cm和100cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、60cm和100cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处。 观测项目有:空气温湿度(Ta_5m、RH_5m、Ta_10m、RH_10m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_5m、WS_10m)(单位:米/秒)、风向(WD_5m、WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_60cm、Ms_100cm)(单位:体积含水量,百分比)和土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_60cm、Ts_100cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;风速风向偶尔出现一些错误值;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30;(6)命名规则为:AWS+站点名称 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日黑河流域地表过程综合观测网中游黑河遥感站气象要素观测数据。站点位于甘肃省张掖市党寨镇东侧,下垫面是人工草地。观测点的经纬度是100.4756E, 38.8270N,海拔1560m。空气温度湿度传感器架设在1.5m处,朝向正北;气压计在防水箱内;翻斗式雨量计安装在0.7 m处;风速风向传感器架设在10m处,朝向正北;四分量辐射仪安装高度为1.5m,朝向正南;两个红外温度计安装高度为1.5m,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm、160cm处;土壤水分探头埋设在2cm、4cm、10cm、20cm、40cm、80cm、120cm、160cm处;平均土壤温度探头埋设在2cm和4cm;土壤热流板(3块)依次埋设在地下6cm处;两个光合有效辐射仪分别架设在冠层上方1.5m(探头垂直向上和向下方向各一个),朝向正南。 观测项目有:空气温湿度(Ta_1.5m、RH_1.5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:%)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)、平均土壤温度(TCAV)(单位:摄氏度)。由于供电问题,8月20日-10月9日数据缺失;由于传感器问题,1月1日-1月22日数据缺失。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30;(6)命名规则为:AWS+站点名称 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日黑河流域地表过程综合观测网上游大沙龙站气象要素观测数据。站点位于青海省祁连县西侧沙龙滩地区,下垫面是沼泽化高寒草甸。观测点的经纬度是98.9406E, 38.8399N,海拔3739m。空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在10m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,并距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:体积含水量,百分比)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2019-9-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了2021年1月1日至2021年12月31日黑河流域地表过程综合观测网中游大满超级站气象要素梯度观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在2m处;翻斗式雨量计安装在塔西侧约8m处,架高2.5m;四分量辐射仪安装在12m处,朝向正南;两个红外温度计安装在12m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处,其中两块(Gs_2、Gs_3)埋设在棵间,一块(Gs_1)埋设在植株下面;平均土壤温度传感器TCAV埋设在地下2cm、4cm处,朝向正南,距离塔体2m处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;光合有效辐射仪安装在12m处,探头朝向是垂直向上;另有四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在12m(探头垂直向上和向下方向各一个)、冠层内安装在0.3m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2021.5.15-6.12由于供电问题,土壤部分数据缺失;由于探头出现问题,平均土壤温度在9月28日后数据错误。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日黑河水文气象观测网上游阿柔超级站气象要素梯度观测系统数据。站点位于青海省祁连县阿柔乡草达坂村,下垫面是亚高山山地草甸。观测点的经纬度是100.4643E, 38.0473N,海拔3033m。空气温度、相对湿度、风速传感器分别架设在1m、2m、5m、10m、15m、25m处,共6层,朝向正北;风向传感器架设在10m处,朝向正北;气压计安装在2m处;翻斗式雨量计安装在阿柔超级站28m观测塔上;四分量辐射仪安装在5m处,朝向正南;两个红外温度计安装在5m处,朝向正南,探头朝向是垂直向下;光合有效辐射仪安装在5m处,朝向正南,探头朝向是垂直向上;土壤部分传感器埋设在塔体正南方向2m处,其中土壤热流板(自校正式)(3块)均埋设在地下6cm处;平均土壤温度传感器TCAV埋设在地下2cm、4cm处;土壤温度探头埋设在地表0cm和地下2cm、4cm、6cm、10cm、15cm、20cm、30cm、40cm、60cm、80cm、120cm、160cm、200cm、240cm、280cm、320cm处,其中4cm和10cm这两层有三个重复;土壤水分传感器分别埋设在地下2cm、4cm、6cm、10cm、15cm、20cm、30cm、40cm、60cm、80cm、120cm、160cm、200cm、240cm、280cm、320cm处,其中4cm和10cm这两层有三个重复。 观测项目有:风速(WS_1m、WS_2m、WS_5m、WS_10m、WS_15m、WS_25m)(单位:米/秒)、风向(WD_1m、WD_2m、WD_5m、WD_10m、WD_15m、WD_25m)(单位:度)、空气温湿度(Ta_1m、Ta_2m、Ta_5m、Ta_10m、Ta_15m、Ta_25m和RH_1m、RH_2m、RH_5m、RH_10m、RH_15m、RH_25m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、土壤热通量(Gs_1、Gs_2)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm_1、Ms_4cm_2、Ms_4cm_3、Ms_6cm、Ms_10cm_1、Ms_10cm_2、Ms_10cm_3、Ms_15cm、Ms_20cm、Ms_30cm、Ms_40cm、Ms_60cm、Ms_80cm、Ms_120cm、Ms_160cm Ms_200cm、Ms_240cm、Ms_280cm、Ms_320cm)(单位:体积含水量,百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm_1、Ts_4cm_2、Ts_4cm_3、Ts_6cm、Ts_10cm_1、Ts_10cm_2、Ts_10cm_3、Ts_15cm、Ts_20cm、Ts_30cm、Ts_40cm、Ts_60cm、Ts_80cm、Ts_120cm、Ts_160cm Ts_200cm、Ts_240cm、Ts_280cm、Ts_320cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了2021年1月1日至2021年12月31日的黑河水文气象观测网中游张掖湿地站涡动相关仪观测数据。站点位于甘肃省张掖市,下垫面是湿地。观测点的经纬度是100.44640E, 38.97514N,海拔1460.00m。涡动相关仪的架高5.2m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(Gill)与CO2/H2O分析仪(Li7500A)之间的距离是25cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日的黑河流域地表过程综合观测网下游四道桥超级站涡动相关仪观测数据。站点位于内蒙古额济纳旗四道桥,下垫面是柽柳。观测点的经纬度是101.1374E, 42.0012N,海拔873 m。涡动相关仪的架高8m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500DS)之间的距离是15cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日的黑河流域地表过程综合观测网下游混合林站涡动相关仪观测数据。站点位于内蒙古额济纳旗四道桥,下垫面是胡杨与柽柳。观测点的经纬度是101.1335E, 41.9903N,海拔874 m。涡动相关仪的架高22m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3B)与CO2/H2O分析仪(Li7500DS)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。冬季水汽密度出现一些负值,进行了剔除。二氧化碳浓度数据在11月3日后出现问题。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日的黑河流域地表过程综合观测网上游景阳岭站涡动相关仪观测数据。站点位于青海省祁连县景阳岭垭口,下垫面是高寒草甸。观测点的经纬度是101.1160E, 37.8384N,海拔3750m。涡动相关仪的架高4.5m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3B)与CO2/H2O分析仪(Li7500DS)之间的距离是15cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。冬季由于供电不足,观测数据会有一些缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了2021年1月1日至2021年12月31日的黑河流域地表过程综合观测网上游垭口站涡动相关仪观测数据。站点位于青海省祁连县,下垫面是高寒草甸。观测点的经纬度是100.2421, 38.0142N,海拔4148 m。涡动相关仪的架高3.2m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是15cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。该站冬季会出现缺电现象,导致数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了2021年1月1日至2021年12月31日的黑河流域地表过程综合观测网中游花寨子站涡动相关仪观测数据。站点位于甘肃省张掖市,下垫面是荒漠。观测点的经纬度是100.3201E, 38.7659N,海拔1731.00m。涡动相关仪的架高4.5m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是15cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日的黑河流域地表过程综合观测网下游荒漠站涡动相关仪观测数据。站点位于内蒙古额济纳旗,下垫面是荒漠。观测点的经纬度是100.9872E, 42.1135N,海拔1054m。涡动相关仪的架高4.7m,采样频率是10Hz,超声朝向是正北向,为闭路涡动相关仪(CPEC310)。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日的黑河流域地表过程综合观测网上游大沙龙站涡动相关仪观测数据。站点位于青海省祁连县,下垫面是沼泽化高寒草甸。观测点的经纬度是98.9406E, 38.8399N,海拔3739 m。涡动相关仪的架高4.5m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500RS)之间的距离是15cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。冬季由于供电不足和采集器的问题,数据间断出现错误, 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了2021年1月1日至2021年12月31日的黑河流域地表过程综合观测网中游大满超级站涡动相关仪观测数据。站点位于甘肃省张掖市大满灌区内,下垫面是玉米。观测点的经纬度是100.37223E, 38.85551N,海拔1556.06m。涡动相关仪的架高4.5m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。由于供电出现问题,5月15日-6月12日数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2021年1月1日至2021年12月31日的黑河流域地表过程综合观测网上游阿柔超级站涡动相关仪观测数据。站点位于青海省祁连县阿柔乡草达坂村,下垫面是亚高山山地草甸。观测点的经纬度是100.4643E, 38.0473N,海拔3033m。涡动相关仪的架高3.5m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是15cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
土壤冻结深度(SFD)是评估冻土区水资源平衡、地表能量交换和生物地球化学循环变化所必需的,是冰冻圈气候变化的重要指标,对季节性冻土和多年冻土都至关重要。 本数据是基于Stefan方程,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP26、RCP45、RCP60和RCP85)、HadGEM2-ES(RCP26、RCP45和RCP85)、IPSL-CM5A-LR(RCP26、RCP45、RCP60和RCP85)、MIROC5(RCP26、RCP45、RCP60和RCP85)和NorESM1-M(RCP26、RCP45、RCP60和RCP85)等多模型不同情景下,利用逐日气温的预测数据及E-factor数据,获得2007-2065年空间分辨率为0.25度,青藏高原区域年平均土壤冻结深度数据集。
潘小多, 李虎
1)数据内容:2001-2018年南极冰盖近地面月气温时空数据集。 2)数据来源及加工方法:利用中分辨率成像光谱仪(MODIS)地表温度测量数据,结合119个气象站的现场气温记录,利用神经网络模型重建了南极冰盖(AIS)近地面气温数据,分辨率为0.05°×0.05°,时间尺度为2001-2018。 3)数据质量描述:精度优于ERA5再分析资料。 4)数据应用成果及前景:该数据库可用于研究南极冰盖近地面气温的时空分布特征,研究SAM和ENSO等对南极气温年际变化的影响。此外,由于数值天气预报模式输入的独立性,该数据集有可能用于气候模式验证和数据同化。
张雪影
数据集为中国多情景多模式逐月平均气温数据,空间分辨率为0.0083333°(约1km),时间为2021年1月-2100年12月。数据为NETCDF格式。数据是根据IPCC耦合模式比较计划第六阶段(CMIP6)发布的全球>100 km气候模式数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成。数据采用IPCC最新发布的SSP情景(SSP119、SSP245、SSP585),每个情景包含三个GCMs(EC-Earth3、GFDL-ESM4、MRI-ESM2-0)气候数据,数据集包含的地理空间范围是中国主要陆地,不含南海岛礁等区域。单位为0.1℃。文件命名是GCM_SSP_tmp-30s-序号.nc,30s即0.0083333°,序号从1-40,序号1表示2021.1-2022.12,依次表示年份;以EC-Earth3_ssp119_tmp-30s-1.nc文件为例,表示SSP119情景下EC-Earth3气候模的1km分辨率2021.1-2022.12逐月均温数据,含24个图层。欲更深入的理解数据请参阅文献引用方式下的数据作者已发表的论文。
彭守璋
本数据集包含:(1)基于测高卫星提取的北半球16个大型湖泊水库冰厚数据,时间跨度为1992-2019年,时间分辨率10天,文件名为Altimetric LIT for 16 large lakes.xlsx;(2)基于遥感湖冰模型的北半球1,313个面积50km^2以上湖泊的逐日湖冰厚度和湖泊表面积雪深度数据,时间跨度为2003-2018年,文件格式为nc格式;(3)未来湖冰厚度变化的预测情况,时间跨度2071-2099年,文件为table S1.xlsx;(4)一个用于查找湖泊的对照表,包含湖泊ID,名称,地理坐标和面积等信息。本数据集可以为全球湖冰和湖面积雪研究提供基础信息,便于深入理解在变化环境下湖冰的演变规律及其对湖泊生态环境和区域社会经济的影响。
李兴东, 龙笛, 黄琦, 赵凡玉
“亚洲水塔”青藏高原(TP)的降水在区域水和能源循环中发挥着关键作用,对下游国家的水资源供应有重要影响。气象站点所获取的降水信息通常被认为是最准确的,但在地形复杂、环境恶劣的青藏高原中,气象站数据却十分有限。卫星和再分析降水产品可以为地面测量提供补充信息,特别是在大面积测量不足的区域。在这里,我们通过使用人工神经网络 (ANN) 和环境变量(包括海拔、地表压力和风速)确定各种数据源的权重来最优地融合站点、卫星和再分析数据。在 1998-2017 年期间,以每日时间尺度和 0.1° 的空间分辨率生成了一个多源降水 (MSP) 数据集横跨青藏高原。与其他四颗卫星产品相比,MSP与标准观测的日降水相关系数(CC)最高(0.74),均方根误差第二低,表明MSP的质量和数据合并的有效性方法。我们使用分布式水文模型进一步评估了青藏高原长江和黄河源头测量不佳的不同降水产品的水文效用。在 2004-2014 年期间,MSP 实现了每日流量模拟的最佳 Nash-Sutcliffe 效率系数(超过 0.8)和 CC(超过 0.9)。此外,基于多重搭配评估,MSP 在未测量的西部 TP 上表现最好。该合并方法可应用于全球其他数据稀缺地区,为水文研究提供高质量的降水数据。整个 TP 的左下角的经纬度、行数和列数以及网格单元信息都包含在每个 ASCII 文件中。
洪仲坤, 龙笛
“一带一路”沿线国家水资源供给恢复力反映了沿线国家水资源供给恢复力水平,数据值越高,表明沿线国家水资源供给恢复力越强。“一带一路”沿线国家水资源供给恢复力数据产品制备,利用2000—2019年FLDAS(Famine Early Warning System Network Land Data Assimilation System)基于Noah陆面模式生产的逐年度降水量、地表径流量和地下净流量模拟数据集,在考虑逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了水资源供给恢复力产品。“一带一路”沿线国家水资源供给恢复力数据集对分析和对比当前各国水资源供给恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家CO2总量减排恢复力反映了沿线国家CO2总量减排恢复力水平,数据值越高,表明沿线国家CO2总量减排恢复力越强。CO2总量减排恢复力数据产品制备参考了2000—2020年全球大气研究排放数据库(Emissions Database for Global Atmospheric Research, EDGAR),利用2000-2020年“一带一路”沿线国家CO2排放总量的逐年数据,在考虑逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了CO2总量减排恢复力产品。“一带一路”沿线国家CO2总量减排恢复力数据集对分析和对比当前各国CO2总量减排恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家医疗卫生条件发展恢复力反映了沿线国家医疗卫生条件发展恢复力水平,数据值越高,表明沿线国家医疗卫生条件发展恢复力越强。医疗卫生条件发展恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家一般政府卫生支出占政府总支出比例、每1000人拥有医院床位数、每10万例活产孕产妇死亡率、每1000新生儿死亡率这4个指标的逐年数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了医疗卫生条件发展恢复力产品。“一带一路”沿线国家医疗卫生条件发展恢复力数据集对分析和对比当前各国医疗卫生条件发展恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家社会就业状况发展恢复力反映了沿线国家社会就业状况发展恢复力水平,数据值越高,表明沿线国家社会就业状况发展恢复力越强。社会就业状况发展恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家总失业人数占劳动力总数的比例这一指标的逐年数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了社会就业状况发展恢复力产品。“一带一路”沿线国家社会就业状况发展恢复力数据集对分析和对比当前各国人口数量增长的恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家人口数量增长恢复力反映了沿线国家人口数量增长恢复力水平,数据值越高,表明沿线国家人口数量增长恢复力越强。人口数量增长恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家人口数量这一指标的逐年数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了人口数量增长恢复力产品。数据集制备方法请参考说明文档。“一带一路”沿线国家人口数量增长恢复力数据集对分析和对比当前各国人口数量增长的恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家人口年龄结构恢复力反映了沿线国家人口年龄结构恢复力水平,数据值越高,表明沿线国家人口年龄结构恢复力越强。人口年龄结构恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家少儿人口比例、劳动年龄人口比例、老年人口比例3个指标的逐年数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了人口年龄结构恢复力产品。数据集制备方法请参考说明文档。“一带一路”沿线国家人口年龄结构恢复力数据集对分析和对比当前各国人口年龄结构恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家人口城镇化发展恢复力反映了沿线国家人口城镇化发展恢复力水平,数据值越高,表明沿线国家人口城镇化发展恢复力越强。人口城镇化发展恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家城镇人口数、人口超百万的城市群中人口数量这2个指标的逐年数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了人口城镇化发展恢复力产品。“一带一路”沿线国家人口城镇化发展恢复力数据集对分析和对比当前各国人口城镇化发展恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家教育条件发展恢复力反映了沿线国家教育条件发展恢复力水平,数据值越高,表明沿线国家教育条件发展恢复力越强。教育条件发展恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家识字率、教育支出金额、中学入学率、高等院校入学率这4个指标的逐年数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了教育条件发展恢复力产品。“一带一路”沿线国家教育条件发展恢复力数据集对分析和对比当前各国教育条件发展恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家道路交通发展恢复力反映了沿线国家道路交通发展恢复力水平,数据值越高,表明沿线国家道路交通发展恢复力越强。道路交通发展恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家公路里程数、铁路里程数、航空运输量、货柜码头吞吐量这4个指标的逐年数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了道路交通发展恢复力产品。“一带一路”沿线国家道路交通发展恢复力数据集对分析和对比当前各国道路交通发展恢复力状况具有重要参考意义。
徐新良
人类发展指数(HDI——Human Development Index)是由联合国开发计划署(UNDP)在《1990年人文发展报告》中提出的,用以衡量联合国各成员国经济社会发展水平的指标。该指标是基于“预期寿命、教育水准和生活质量”三项基础变量,按照一定的计算方法得出的综合指标。“一带一路”沿线国家人类发展恢复力数据集是全面反应各国人类发展恢复力的指标。“一带一路”沿线国家人类发展恢复力数据集是利用2000-2020年“一带一路”沿线各国人类发展指数这一指标的逐年数据,在进行敏感性和适应性分析基础上,通过综合诊断,制备生成的人类发展恢复力指标数据。数据集制备方法请参考说明文档。“一带一路”沿线国家人类发展恢复力数据集对分析和对比当前各国人类发展的恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家人均GDP增长恢复力数据集全面反映各国人均GDP增长恢复力水平,数据值越高,表明沿线国家人均GDP增长恢复力越强。人均GDP增长恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家人均GDP(2010年不变价美元)这一指标的逐年数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了人均GDP增长恢复力产品。“一带一路”沿线国家人均GDP增长恢复力数据集对分析和对比当前各国人均GDP增长恢复力状况具有重要参考意义。
徐新良
宏观经济是指整个国民经济或国民经济总体及其经济活动和运行状态。“一带一路”沿线国家宏观经济发展恢复力数据集全面反映了沿线国家宏观经济发展恢复力水平,数据值越高,表明沿线国家宏观经济发展恢复力越强。宏观经济发展恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家人均GDP、固定资本形成总额占GDP的百分比、按GDP平减指数衡量的通货膨胀、总储蓄占GDP的百分比4个指标的逐年变化数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了宏观经济发展恢复力产品。“一带一路”沿线国家宏观经济发展恢复力数据集对分析和对比当前各国宏观经济发展的恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家国内经济系统恢复力数据集全面反映各国国内经济系统恢复力水平,数据值越高,表明沿线国家国内经济系统恢复力越强。国内经济系统恢复力包括宏观经济发展恢复力、工业和服务业发展恢复力,数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家人均GDP、固定资本形成总额占GDP的百分比、按GDP平减指数衡量的通货膨胀、总储蓄占GDP的百分比、工业增加值占GDP的百分比、服务业增加值占GDP的百分比这6个指标的逐年数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了国内经济系统恢复力产品。“一带一路”沿线国家国内经济系统恢复力数据集对分析和对比当前各国国内经济系统恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家工业和服务业发展恢复力数据集反映了沿线国家工业和服务业发展恢复力水平,数据值越高,表明沿线国家工业和服务业发展恢复力越强。工业和服务业发展恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家工业增加值占GDP的百分比、服务业增加值占GDP的百分比2个指标的逐年变化数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了工业和服务业发展恢复力产品。“一带一路”沿线国家工业和服务业发展恢复力数据集对分析和对比当前各国工业和服务业发展的恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家对外贸易系统恢复力数据集全面反映各国对外贸易系统恢复力水平,数据值越高,表明沿线国家对外贸易系统恢复力越强。对外贸易系统恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家贸易额占国民生产总值(GDP)比例、货物和服务出口年增长率、货物和服务进口年增长率3个指标的逐年数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了对外贸易系统恢复力产品。数据集制备方法请参考说明文档。“一带一路”沿线国家对外贸易系统恢复力数据集对分析和对比当前各国对外贸易系统的恢复力状况具有重要参考意义。
徐新良
近地表气温是反映气候变化的重要物理参数。为了获得中国地区高时空分辨率的日数据(Tmax、Tmin和Tavg),我们充分分析了各种现有数据(再分析数据、遥感数据和原位数据)的优缺点。针对不同的天气条件建立了不同的Ta重建模型,并通过建立不同区域的修正方程进一步提高数据精度。最后,获得了1979 - 2018年中国逐日气温数据集(Tmax、Tmin和Tavg),空间分辨率为0.1°。 对于Tmax,使用原位数据的验证表明,均方根误差(RMSE)范围为0.86°C至1.78°C,平均绝对误差(MAE)范围为0.63°C至1.40°C,皮尔逊系数(R2)范围为0.96至0.99。Tmin的RMSE为0.78°C ~ 2.09°C, MAE为0.58°C ~ 1.61°C, R2为0.95 ~ 0.99。对于Tavg, RMSE范围为0.35°C ~ 1.00°C, MAE范围为0.27°C ~ 0.68°C, R2范围为0.99 ~ 1.00。此外,利用多种评价指标分析Ta的时空变化趋势,Tavg增加幅度大于0.0°C/a,与全球变暖的总体趋势一致。 综上所述,该数据集具有较高的空间分辨率和可靠的精度,弥补了之前在高空间分辨率下缺失的温度值(Tmax、Tmin和Tavg)。该数据集也为研究气候变化,特别是高温干旱和低温冷害提供了关键参数。
方舒, 毛克彪
冻结(融化)指数是指一年内小于(大于)0 ℃的所有温度的和。地表冻结(融化)指数是度量地表冻结(融化)时间和能力大小的重要参数,可反映区域的冻融环境特征。基于MODIS-LST数据产品,来源于国家青藏高原科学数据中心,采用MATLAB语言读取三江流域内数据,结合冻结(融化指数)公式计算,获得了三江流域外动力环境因素地表冻结、融化指数空间分布数据集(2003~2015平均),该数据集可较好的反映三江流域地表冻结、融化的能力,从而反映区域的冻融环境特征,为冻融滑坡的发育提供重要的外动力环境因素。
刘明浩
针对青藏高原泛三江并流区的17.9万km2的区域,通过Sentinel-1升降轨,以及Palsar-1升轨三种SAR数据进行InSAR变形观测,根据获取的InSAR变形图像,结合地貌和光学影像特征进行综合解译。共识别得到海拔4000m以下的活动性滑坡949处。需要注意的是,因不同SAR数据的观测角度、敏感度和观测时相的差异,同一滑坡用不同数据解译存在一定的差异,在滑坡的范围、边界方面需要借助地面和光学影像进行修正。滑坡InSAR识别比例尺的概念与传统空间分辨率不同,主要依靠变形强度,因此一些规模较小,但与背景相比变形特征突出,整体性强,与地物具有逻辑空间关系的滑坡也能得以解译(配合SAR的强度图、地形阴影图、光学遥感影像为地物参照)。本次最小解译区域可达几个像素,如参考怒江沿江公路解译了一处只有4个像素的公路边坡滑坡。
姚鑫
本数据是研究团队综合利用Sentinel-1 SAR数据,AMSR-2微波辐射计数据以及MODIS LST产品所生产的青藏工程走廊区域高分辨土壤冻融数据集。基于新提出的算法,本产品提供月尺度100m空间分辨土壤冻融状态检测结果,并通过气象站点和土壤温度站点进行精度验证。基于青藏工程走廊地区的4个气象站点进行精度验证,结果表明基于升轨和降轨Sentinel-1的土壤冻融检测结果的整体准确率分别为84.63%和77.09%。基于那曲土壤湿度/温度监测站点进行精度验证,升轨和降轨结果的平均整体精度为78.58%和76.66。该产品弥补了传统土壤冻融产品空间分辨率不足(>1km)的问题,为青藏工程走廊区域高分辨率土壤冻融监测提供了可能。
周欣, 刘修国, 周俊雄, 张正加, 陈启浩, 解清华
土壤水分是地气交互作用的重要边界条件,是全球观测系统提出的关键气候变量之一;植被光学厚度是微波辐射传输过程中衡量植被衰减特性的物理量,在表征植被水分与生物量动态变化中具有重要作用。 本数据集使用多通道协同反演算法获取SMAP观测的土壤水分与植被光学厚度。该算法利用参数间的自约束关系与通道间的理论转换关系进行地表参数反演,反演过程不依赖于其他辅助数据,并适用于多种不同载荷配置。本数据集的土壤水分反演结果包含了融化期的土壤水分含量与冻结期的液态水含量;同时反演了水平和垂直两个极化的植被光学厚度,是全球第一套具有极化差异的L波段植被光学厚度产品。 本数据集基于国际土壤水分观测网络、美国农业部及研究室自建发布的共19个土壤水分密集观测站网(其中包含9个SMAP核心验证站点以及SMAP尚未使用的10个密集观测站点)以及被广泛使用的土壤气候分析网络SCAN进行验证,结果发现MCCA土壤水分反演结果精度优于其它SMAP产品。
赵天杰, 彭志晴, 姚盼盼, 施建成
本数据采用由滑坡崩塌灾害致灾因子、滑坡崩塌易发性模型,暴露人口和人口伤亡率四大模块共同构成的喜马拉雅山周边及亚洲水塔区多灾种人口综合风险评估模型。致灾因子模块包括DEM、坡度、降雨、气温、积雪覆盖度、GDP、植被覆盖度因素。滑坡灾害崩塌易发性模型是利用logistic回归模型进行统计分析,得到滑坡崩塌灾害易发概率值。人口暴露度模块是利用滑坡崩塌灾害易发性值与人口数据叠乘。人口伤亡率模块是基于滑坡崩塌灾害历史伤亡人口与同时期滑坡崩塌灾害暴露人口的比值得到。最后,代入2020年人口数据,计算滑坡崩塌灾害易发性不同等级下的暴露人口,并与历史时期滑坡崩塌灾害人口伤亡率相乘,评估2020年喜马拉雅山周边及亚洲水塔区多灾种人口综合风险。
王瑛
基于长时间序列MODIS积雪产品,采用隐马尔可夫随机场(Hidden Markov Random Field, HMRF)建模框架,制备了青藏高原2002-2021年空间分辨率为500 m的逐日无云积雪数据集。该建模框架将MODIS积雪产品的光谱信息、时空背景信息,以及环境相关信息以最优形式进行整合,不仅填补了云层遮挡引起的数据空缺,而且提高了原始MODIS积雪产品的精度。特别地,本数据集在环境背景信息中引入了太阳辐射能量对积雪分布的影响,有效改进了地形复杂山区的积雪识别精度。通过与实测雪深、Landsat-8 OLI识别的积雪分布对比分析,本数据集精度依次为98.31%和92.44%,并且在积雪转化期、海拔较高、太阳辐射较多的阳坡提升效果显著。本数据集改善了原始MODIS积雪产品时空不连续和在地形复杂山区精度较低的问题,能为青藏高原气候变化研究和水资源管理提供重要的数据基础。
黄艳, 许嘉慧
1978-2016青藏高原湖冰物候数据集包含青藏高原132个湖泊(面积大于40平方公里)1978-2016年的湖冰物候(开始结冰日、完全结冰日、开始融化日、完全融化、冰期、完全结冰期)。数据集利用模型和遥感结合的方式获取物候信息,首先基于MOD11A2提取的全湖平均湖面温度率定改进的湖泊半物理模型(air2water)生成日尺度长时序湖面温度序列,再利用MOD10A1雪覆盖产品获取湖冰物候提取的温度阈值。与现有研究结果和数据集对比,相关性(R方)高于0.75。该数据集结合遥感技术和数值模型的优势,为大时空尺度上分析青藏高原湖泊水-气交换、水热平衡及湖泊中生物化学过程对气候变化的响应提供支撑。
郭立男, 吴艳红, Zheng Hongxing, 张兵, 迟皓婧, 范兰馨
本数据库包括青藏高原坡度、坡向及数字高程模型数据(DEM)。数据来源于地理空间数据云网站下载的分辨率为30m*30m的数值高程模型数据,利用Arcgis软件的表面分析功能,提取出了青藏高原的坡度和坡向信息。该数据经多人复查审核,其数据完整性、位置精度、属性精度均符合标准,质量优良可靠。该数据作为工程地质条件之一,是进行青藏高原重大工程扰动灾害、重大自然灾害的发育规律研究及易发性、危险性及风险分析的基础数据。
祁生文
流域内的水量平衡可以通过单个湖泊的水位波动体现,而区域湖泊水位的一致性波动则可以反映区域有效水分的变化。以往的研究主要通过分析湖泊沉积物的多代用指标来重建过去的有效水分,缺少对区域有效水分变化的定量研究。青藏高原及东中亚地区典型湖泊区域全新世有效水分连续模拟结果数据集是基于湖泊能量平衡模型、湖泊水量平衡模型及瞬态气候演变模型,以构建的虚拟湖泊为载体,连续且定量地展示了青藏高原青海湖、沉错、班公错等以及东中亚地区青土湖、呼伦湖、岱海等湖泊区域全新世有效水分变化。模拟结果为探究千年尺度上湖泊演化过程提供了新的视角。
李育
该数据为2020年西藏26个湖泊70个点位浮游植物数据,采样时间为8-9月,采样方式为常规浮游植物采样方式,样品采集1.5升,后经鲁哥氏液固定,静止沉淀后虹吸浓缩后,利用倒置显微镜镜检结果。数据包括硅藻、绿藻、蓝藻、甲藻、裸藻、隐藻、棕鞭藻、黄藻、褐藻和轮藻等10个门类,共计77种/属不同浮游植物的密度数据。该数据为原始数据,未经过处理,单位为个/L。该数据可以用于表征这些湖泊敞水区浮游植物的组成、丰度,也可用于计算这些湖泊中浮游植物群落的多样性。
张民
冰川物质平衡是表征冰川积累和消融量值的重要冰川学参数之一。冰川物质平衡是联系气候和冰川变化的纽带,是冰川对所在地区气候状况的直接反映。气候变化导致冰川的物质收支状况发生相应的变化,而这种物质上的收支变化又可以引起冰川运动特征及冰川热状况的改变,进而导致冰川末端位置、面积和冰储量的变化。监测方法即在冰川表面设置固定标志花杆,定期监测冰川表面相对于花杆顶点的距离,以计算冰雪消融量;在积累区定时定点开挖雪坑或钻孔取样,测量雪层密度,分析雪-粒雪-附加冰层位特征,计算雪层积累量;再将单点监测结果绘到大比例尺冰川地形图上,按净平衡等值线法或等高线分区法计算整条冰川的瞬时、季节(如冬季和夏季)及年度的物质平衡分量。该数据集为青藏高原及天山地区不同代表性冰川年物质平衡数据,单位为毫米水当量。
邬光剑
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
湖泊汇集上游流域的径流及其携带的泥沙和营养物质,是流域中物质迁移的重要“归宿”,因此湖泊水体和沉积物属性在很大程度上受湖泊流域的属性(如湖泊上游的气候、地形和植被条件)影响。本数据集根据数字高程模型提取青藏高原上1525个湖泊(面积从0.2到4503平方公里)的流域范围,计算了湖泊水体、地形、气候、植被、土壤/地质和人类活动等6方面的721个属性,是首套青藏高原湖泊流域属性数据集,可为青藏高原湖泊(特别是缺资料湖泊)研究提供基础数据。
刘军志
本数据集是以UEA-CRU与UDEL提供的长时间尺度(1901-2016年)温度计算的冻结指数作为输入数据,通过Stefan经验公式计算雅鲁藏布江流域土壤冻结深度,并插值模拟输出的30年尺度平均土壤冻结深度数据集。本数据集是以UEA-CRU与UDEL提供的长时间尺度(1901-2016年)温度计算的冻结指数作为输入数据,通过Stefan经验公式计算雅鲁藏布江流域土壤冻结深度,并插值模拟输出的30年尺度平均土壤冻结深度数据集。
刘磊, 罗栋梁, 王磊
本数据集为TCA(Triple Collocation Analysis)算法代码集,用于生成2011-2018年全球日尺度土壤水分融合数据。
谢秋霞, 贾立, 胡光成
本数据为青藏高原1:25万重大工程扰动灾害数据。对于灾害解译范围,线路工程(国道、高速、铁路、电网工程)及水电工程,以工程两侧第一分水岭为界;矿山、油田和口岸工程,以距离工程1km为界。工程扰动灾害划分为两类:①由工程建设诱发的滑坡、崩塌、泥石流灾害;②可能影响工程的自然灾害,规定上述解译范围内的所有自然灾害均属于第②类工程扰动灾害。其数据包含滑坡的位置、长、宽、高差、分布高程、成因类型、诱发因素、发生时间、岩性等要素及灾害相关工程及工程建设年份等。依据Google earth影像及1:50万地质图解译全区工程扰动灾害,共解译了6176个灾害点;主要利用Google earth进行扰动灾害解译,同时结合野外考察验证解译结果,利用ArcGIS生成灾害分布图件;数据来源于Google earth高分辨率影像,原始数据精度高,在灾害文件生成过程中严格按照解译规范,并有专人审查,数据质量可靠;依据所收集数据可进行研究区灾害风险分析,为已建工程的顺利运行和未建/在建线路工程的建设提供理论指导。
祁生文
本数据集为青藏高原区域2002-2020年日分辨率0.00425° x0.00425°地表反照率产品。基于MODIS反射率数据,采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,反演时空连续的日分辨率的高精度BRDF/反照率。MODIS地表反射率数据(MOD09GA、MYD09GA)集为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日分辨率的反照率,其中,黑空反照率的太阳入射为当地正午时太阳入射。经过验证评估,满足反照率应用精度要求,相较于同类产品在山区站点的验证精度更高,且时空连续性更好。可有效支撑青藏高原地区辐射平衡、环境变化研究。
游冬琴, 唐勇, 韩源
数据集为中国逐月潜在蒸散发,空间分辨率为0.0083333°(约1km),时间为1990.1-2021.12(将每年更新),单位为0.1mm。该数据集是基于中国1km逐月均温、最低温、最高温数据集(本站已发布,Peng at al. 2019),采用Hargreaves潜在蒸散发计算式得到(Peng at al. 2017)。公式如下: PET = 0.0023 × S0 ×(MaxT − MinT)0.5 ×(MeanT + 17.8), 其中,PET为潜在蒸散发,mm/月;MaxT、MinT、MeanT分别为月最高温、最低温、均温;S0为到达地球大气层顶的理论太阳辐射,根据太阳常数、日地距离、儒略日、赤纬等计算得到。 为便于存储,数据均为int16型存于nc(NETCDF)文件中。nc数据可用ArcMAP软件打开制图,并可用Matlab、R软件提取处理。数据坐标系统建议使用WGS84。
彭守璋
本数据包含国内青藏高原范围内的1:400万精度的断裂数据,属性表字段包括断裂名称、断裂长度、走向、倾向、断层性质、古地震等。该数据来源于地震局,后来通过大量查阅断裂相关的文献,又在原始数据的基础上添加了断裂的活动年代这一属性。原始数据资料精度可靠,并有专人负责质量审查;经多人复查审核,其数据完整性、位置精度、属性精度均符合有关技术规定和标准的要求,质量优良可靠。该断裂数据可为青藏高原区域的一些断裂相关的研究工作提供基础数据支撑。
祁生文
中亚是一个高度农业化的地区,其农业资源有限且非常脆弱。为了评估未来气候变化对中亚农业的潜在影响,我们基于3个全球气候模式的9千米动力降尺度结果生产了一个中亚农业气候指数(agroclimatic indicators)高分辨率预估数据集。这些农业气候指数是生长季长度(growing season length, GSL, days),有效积温(biologically effective degree days, BEDD, ℃),霜冻天数(frost days, FD, days),夏日天数(summer days, SU, days),热浪天数(warm spell duration index, WSDI, days)和热夜天数(tropical nights, TR, days)。时段是1986-2005和2031-2050,空间分辨率为0.1°。由于这些指数(除了WSDI)都是基于温度的绝对阈值定义的,对区域模拟结果的系统偏差非常敏感,我们首先用分位数映射法(quantile mapping, QM)订正了模拟的气温,然后基于订正后的气温计算指数。评估结果显示:QM方法大幅减小了指数的偏差。预估结果显示:GSL,SU,WSDI和TR在整个中亚将显著增大,而FD将显著减小;BEDD的变化具有明显的空间差异性,在中亚北部和山区是增大的,在平原的中部和南部是减小的。这个高分辨率的数据集可被用于评估未来气候变化对中亚农业的风险影响。
邱源
沱沱河源区植被类型图是基于 319 个地面采样点数据结合随机森林(RF)分类方法进行创建的。随机森林分类器的16个输入变量包括了Landsat-8的可见光、短波红外和热红外波段值及其反演的植被指数和地表温度数据等。根据研究区的植被特征及多年冻土模拟的需要,该图对高寒沼泽草甸(alpine swamp meadow)、高寒草甸(alpine meadow)、高寒草原(alpine steppe)和高寒沙漠(alpine desert )等4种植被类型进行了分类。图件的空间分辨率为30 m,可以提供更细节的植被类型的位置信息。
邹德富, 赵林, 刘广岳, 杜二计, 胡国杰, 李智斌, 吴通华, 吴晓东, 陈杰
本数据为东南亚地区2015年的地表类型数据,空间分辨率为30米,数据类型为NetCDF,变量名为“land cover type”。该数据基于FROM-GLC数据加工而成,通过对原始影像的拼接、裁剪得到覆盖东南亚的地表类型数据,剔除东南亚地区不存在的雪冰等下垫面类型并重新整合图例。修改下垫面类型编码生成包含东南亚的地表类型数据。该数据提供耕地、森林、草地、灌木、湿地、水体、不透水面、及裸地共8种下垫面的信息。数据总体精度为71% (Gong et al., 2019),可为水文模型、区域气候模式等提供东南亚地区的下垫面信息。
刘俊国
“一带一路”沿线国家能源供给恢复力反映了沿线国家能源供给恢复力水平,数据值越高,表明沿线国家能源供给恢复力越强。“一带一路”沿线国家能源供给恢复力数据产品制备参考了国际能源署各国能源统计数据(https://www.iea.org/data-and-statistics),利用2000-2019年“一带一路”沿线国家煤炭、石油、天然气供给的逐年数据,在考虑各能源逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了能源供给恢复力产品。
徐新良
人口年龄结构恢复力反映了沿线国家人口年龄结构恢复力水平,数据值越高,表明沿线国家人口年龄结构恢复力越强。人口年龄结构恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家少儿人口(0-14岁)比例、劳动年龄人口(15-64岁)比例、老年人口(65岁及以上)比例(反向指标)3个指标的逐年变化数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了人口年龄结构恢复力产品。
徐新良
“一带一路”沿线国家人口数量增长恢复力反映了沿线国家人口数量增长恢复力水平,数据值越高,表明“一带一路”沿线国家人口数量增长脆弱性越小,恢复力越强。“一带一路”沿线国家人口数量增长恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家人口数量这一指标的逐年变化数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了人口数量增长恢复力产品。
徐新良
热融滑塌是由于富冰多年冻土退化而导致的一种类似滑坡的热喀斯特地貌。一旦形成,它们会以较高的速度(几米至几十米每年)溯上坡方向扩张,垮塌的土壤和岩石会流向周边,对基础设施构成威胁,并可能释放冻土中的碳。已有研究表明,热融滑塌广泛地分布于多年冻土区,并且最近十多年它们的数量和影响范围显著增加。青藏工程走廊跨越多年冻土区,是连接内地与西藏的动脉,但已有研究对热融滑塌的分布和影响的认识还十分缺乏。为了对整个青藏工程走廊的热融滑塌进行详细和全面的调查,本研究使用深度学习方法以及目视解译和实地验证,识别并勾勒了2019 年该区域的热融滑塌。使用的高分辨率遥感影像是PlanetScope微小卫星影像,分辨率为 3 米,有4个波段,完全覆盖了整个工程走廊的多年冻土区( 约54,000 平方公里)。该方法结合深度学习的高效性及自动化和人工解译的可靠性,对整个区域进行接近十次的迭代制图,最大程度地避免漏检和误检。目视解译根据其地貌特征和时间变化(2016至2020)检查深度学习算法自动勾绘的热融滑塌。结果中包含 875 个热融滑塌的边界,以及它们的一些属性,包括编号、经纬度、置信概率和时间等信息。该结果为研究青藏工程走廊多年冻土退化以及相应的影响提供了一个重要的基准数据集。
夏卓璇, 黄灵操, 刘琳
采用三种广泛使用的基于模型的蒸散发数据集,包括ERA5,MERRA2和GLDAS2-Noah再分析数据,使用变异系数选取具有高一致性的融合区域,基于可靠性集合平均法融合获得了空间分辨率为0.25°的长序列(1980-2017年)全球逐日蒸散发产品(REA ET)。以GLEAM3.2a和通量塔观测数据作为参考数据和验证数据,结果表明,融合产品很好地捕捉了不同地区的蒸散发趋势,在所有植被覆盖情景下表现良好。数据集以NetCDF格式存储,包含变量E,代表陆地实际蒸散发,以毫米(mm)为单位。数据集包含三个维度:经度、纬度和时间,经度范围为-179.875E~179.875E,纬度范围为-59.875N~89.875N。完整时间覆盖范围为1980年1月1日~2017年12月31日。
陆姣, 王国杰, 陈铁喜, 李世杰, Daniel Fiifi Tawia Hagan, Giri Kattel, 彭建, 姜彤, 苏布达
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件