English | 中文
面向中亚五国农业可持续发展,以耕地为目标,从土地资源开发利用风险角度开展了土地资源脆弱性评价。以耕地为目标的土地资源开发利用风险评价因子包括:地形因子(高程、坡度)、土地利用类型、土壤质地等,农业可持续发展评价因子包括:人均GDP、人均谷物产量、农业经济增长率、城市化水平、人口自然增长率、土壤有机质含量等。将上述指标中直接代表土地资源属性的土地利用类型、土壤质地、土壤有机质含量等作为土地资源脆弱性评价指标,基于指标加权平均获取了土地资源脆弱性,并将土地资源脆弱性评价作为土地资源开发利用风险评价的一部分,进行土地资源开发利用风险评估时采用多元线性回归方法确定土地资源脆弱性评价指标的权重。数据提供了1995s (1992-1996), 2000s (1997-2001), 2005s (2002-2006), 2010s (2007-2011), 2015s (2012-2017)和1995-2015六个时间段的中亚五国土地资源脆弱性,空间分辨率为0.5°×0.5°。数据集可为中亚五国土地资源开发利用和农业发展等提供基础数据支撑。
1)沙尘、硫酸盐、有机碳、黑碳和海盐气溶胶以及总气溶胶的光学厚度、垂直质量浓度和消光系数; 2)数据来源:数值模拟,加工方法:基于CALIPSO卫星垂直观测和全球气溶胶模式,通过四维局地集合转换卡尔曼滤波同化方法产生; 3)数据质量良好; 4)该气溶胶同化数据时空覆盖完整,可用于泛第三极地区气溶胶及其化学组分的时空分布特征及其演变规律研究,还可用于气溶胶-云互馈对降水和水汽输送及其辐射、气候以及环境效应研究。
CMIP5(Coupled Model Intercomparison Project Phase 5)是气候耦合模型相互比较项目的第五阶段实验,提供了一个多气候模式环境,可用于预估“一带一路”关键节点区域未来气候变化,以应对关键节点区域的环境气候问题。本数据集以“一带一路”关键节点区域为研究区,对CMIP5的43个气候模式对研究区未来气候变化的预估能力进行评估,以模拟结果的均方根误差为标准,分别选取RCP4.5及RCP8.5情景下模拟能力最优的气候模式,对研究区进行气候模拟,得到研究区2006至2065年降雨量、气温的未来预估数据,并使用统计降尺度方法使数据集空间分辨率达到10km,时间分辨率为每月。每一期数据具有三个波段,分别是气温最大值、气温最小值和降雨量。本数据集中,降雨量单位为kg/(m^2*s),气温单位为K。本数据集为应对关键节点区域的环境气候问题提供数据基础。
输沙势计算公式为DPi=∑U^2*[U-Ut]*fu,其中i表示16个方位,具体有N、NNE、NE、NEE、E、EES、ES、ESS、S、SSW、WS、WWS、W、WWN、NW和NNW;U表示的是世界气象组织气象站所设置的风速表高度大于起沙风的有效风,一般为10m标准高度;Ut表示的是沙粒起动风速,标准高度上使地表沙粒处于跃动状态的最小风速;而fu是表示风速在沙粒起动风速Ut以上的刮风时间次数。采用2m/s的有效风速间隔,对应的平均风速分别为7、9、11、13、15、17、19、21、23、25、27、29、31、33和34m/s。注意:为了确保Fryberger提出的风能环境的有效分类(低能<200VU,200VU≤中能<400VU,高能≥400VU),这些平均风速已经使用换算系数(1knot=0.5144m/s)将速度单位m/s表达成速度单位knot。计算刮风时间比例时的分母使用的是平年8760,闰年8784(年总小时数)。风速数据来自于1950-2021年ERA5 Land 10m高度U和V向风速,时间分辨率为小时,空间分辨率为0.1°。
青藏高原蒸散发是利用遥感、气象、以及野外通量观测站等数据,采用多尺度-多源数据协同的陆表蒸散遥感模型-ETWatch进行计算的。ETWatch采用了余项法与P-M公式相结合的方法计算蒸散。首先根据数据影像的特点选择适用的模型反演晴好日蒸散;遥感模型常常因为天气状况无法获取清晰的图像而造成数据缺失,为获得逐日连续的蒸散量的,引入Penman-Monteith公式,将晴好日的蒸散结果作为“关键帧”,将关键帧的地表阻抗信息为基础,构建地表阻抗时间拓展模型,填补因无影像造成的数据缺失,利用逐日的气象数据,重建蒸散量的时间序列数据,并通过数据融合模型,将中低分辨率的蒸散时间变化信息与高分辨率的蒸散空间差异信息的相结合,构建高时空分辨率蒸散数据集,从而生成青藏高原8km分辨率蒸散数据集(1990-2015)。
1)数据内容:泛第三极地区基于遥感反演的主要生态环境数据,包含PM2.5浓度、森林覆盖率、EVI、土地覆被、CO2等指标;2)数据来源及加工方法:PM2.5数据来源于the Atmospheric Composition Analysis Group Web site at Dalhousie University、森林覆盖度数据来源于MODIS Vegetation Continuous Fields (VCF),CO2数据来源于ODIAC Fossil fuel emission dataset,EVI数据来源于MODIS Vegetation Index Products,土地覆被数据来源ESA CCI Land cover。提取出泛第三极65个国家和地区,其他未进行加工;3)数据质量描述:数据2000-2015年数据时间序列较好;4)数据应用成果及前景:可用于生态环境变化分析。
本数据集包含青藏高原地区近50年(1950-2002)的自然灾害统计信息,包括干旱、雪灾、霜灾、冰雹、洪涝、风灾、雷电灾害、寒潮和强降温、低温冻害、大风沙尘暴、虫灾、鼠害等气象灾害产生的时间地点及所造成的损失及影响。 青海和西藏是青藏高原的主体,青藏高原是我国生物物种形成、演化的中心之一,也是国际科技界瞩目的研究气候和生态环境变化的敏感区和脆弱带,其复杂的地形条件,高峻的海拔高度和严酷的气候条件决定了生态环境十分脆弱,,成为我国自然灾害发生最频繁的地区。 数据摘录自《中国气象灾害大典·青海卷》、《中国气象灾害大典·西藏卷》,人工录入总结校对。
该数据集是基于一系列微波遥感数据获取,包含Special Sensor Microwave Imager (SSM/I), Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E)等,表征植被的含水量,可作为初级生产力的参考。数据来源于Liu et al. (2015),具体计算方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域。该数据集常被用作评定植被绿度和初级生产力的时间和空间格局,具有实际意义和理论价值。
广义的季节冻土包括非多年冻土区的季节冻结层和多年冻土区的季节融化层。季节冻土的面积可达80%以上,占据北半球大部分陆地面积。季节冻土的冻融循环过程对地-气水热交换、地表能量平衡、地表水文过程、生态系统、碳循环、农业生产、工程建设等具有非常重要的影响。基于站点观测资料、CRU资料,利用Stefan方程,计算祁连山多年冻土区活动层厚度和季节冻土区土壤冻结深度的空间分布(1971-2000年的30年平均值)。研究结果有助于进一步探讨祁连山季节冻土变化与气候变化之间的物理机制、冻土区生态-水文过程等研究。
本数据集是一个包含34年(1983.7-2017.6)的全国高分辨率地表太阳辐射数据集,其分辨率为10公里,数据单位为W/㎡。该数据集是基于以ISCCP-HXG云产品为主要输入的全球高分辨率(3小时,10公里)地表太阳辐射数据集(1983-2017)上,通过地理加权回归方式,融合全国2261个气象台站日照时数反演的地表太阳辐射站点数据而生成的全国地表太阳辐射分布数据。验证并和其他全球卫星辐射产品比较表明,该数据集在长期趋势模拟上比GEWEX-SRB、CMSAF-CLARA-A2、ISCCP-HXG卫星辐射产品的精度要高。本数据可为陆地表面过程模拟的水文生态学的长期变化应用和研究中提供有利的数据支持。
古湖沼学和古生态学方法为气候环境变化与生态系统过程变化研究提供了一个长期的视角,它们记录了气候变化与人类活动对水生生态系统的直接影响和间接影响过程。湖泊沉积物中的浮游动物壳体和沉积色素,可以反映湖泊生态系统中初级生产者(光合生物)和初级消费者的群落结构的变化。作者利用青藏高原中部湖泊达则错的沉积物中的卤虫的头壳和西藏蚤的卵,以及沉积色素重建了过去600年来的浮游动物和浮游植物群落变化。利用总氮和总磷重建了湖泊过去营养盐的变化。结果显示,浮游植物群落变化主要受控于浮游动物群落,这一结果可为未来高原湖泊生态系统的管理提供重要的理论参考。
该数据提供了南极冰盖2013年-2019年间的年度冰流速产品,该产品是第一个采用Landsat 8 光学影像的全色波段(15米分辨率)获取的南极冰川流速年度产品。所使用的影像时间段为2013年12月-2019年4月。该南极年度冰流产品共采用了超过8万景Landsat 8影像,超过25万景形变测量结果。洲际冰流速产品采用了非局部均值滤波误差处理方法,裸岩区域作为标定的处理方法,提高了冰流的细节和定位精度。是至今为止南极覆盖最全、分辨率最高的年度产品。该产品可以作为评估南极冰盖物质平衡的重要基础资料,也可以作为冰川模型的标定产品。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件