English | 中文
This file contains the datasets used in a manuscript published in JGR Biogeosciences (Nieberding, F., Wille, C., Ma, Y., Wang, Y., Maurischat, P., Lehnert, L., and Sachs, T.: Winter daytime warming and shift in summer monsoon increase plant cover and net CO2 uptake in a central Tibetan alpine steppe ecosystem, Journal of Geophysical Research: Biogeosciences, 126, e2021JG006441, doi:10.1029/2021JG006441, 2021.). The manuscript contains all the details on how the data was generated and processed and the corresponding code was published in the supplementary material.
地表太阳入射辐射(Surface Solar Irradiance,SSI)是FY-4A L2定量反演产品之一,覆盖范围为全圆盘,无投影,空间分辨率为4km,时间分辨率可达15min(20180921开始全天共40个观测时次,除每个整点时次的观测外,每3hr整点前后15min各有一次观测),光谱范围为0.2µm~5.0µm。产品输出要素包括总辐照度、水平面直接辐照度、散射辐照度,有效测量范围为0~1500 W/m2。FY-4A SSI产品在覆盖范围、空间分辨率、时间连续性、输出要素等方面质的提升为进一步开展其在太阳能、农业、生态、交通等专业气象服务中的精细化应用提供了可能。目前研究结果表明,与地基观测相比,FY-4A SSI 产品在中国地区的整体相关性在0.75以上,可用于中国地区太阳能资源评估。
青藏高原1km分辨率风能资源数据是采用中国气象局风能资源数值模拟评估系统(WERAS/CMA)研制的,该系统包含典型地形分类模块、中尺度模式WRF和CALMET动力诊断模式。首先从历史上出现过的天气类型中随机抽取典型日进行逐小时风速模拟,再根据天气型出现的频率统计分析得到风能资源的气候平均分布。本数据集包括青藏高原风速和风功率密度,风速的数据精度为0.01m/s,风功率密度的数据精度为0.01W/m2,数据的垂直高度为100米。数据经过了气象站观测资料的检验和订正,主要用于风能资源详查和风电场宏观选址。该数据为2008-2012年全国风能资源详查和评价项目产出数据(项目经费2.9亿),之后成为风能资源相关研究的基础数据,近期财政部没有计划投资再延长这个数据集。
雷达穿透深度改正对于采用基于雷达DEM的大地测量方法进行准确估算冰川物质平衡至关重要。由于雪的分布不均和积雪性质不同,雷达的穿透深度会因地区而异,并且依赖于海拔高度,所以本数据集给出了高亚洲1°×1°网格的SRTM C/X波段雷达穿透深度差异。该数据集包含214个高亚洲1°×1°网格的SRTM X波段和C波段的穿透深度差异结果,以及每个网格的线性拟合表达式。基于大地测量方法,采用30 m分辨率的SRTM X波段和C波段 DEM,获得了高亚洲 X波段和C波段的冰雪穿透深度差异结果,采用50 m高程分段法和线性回归分析法得到了穿透深度差与海拔高程的关系(具体方法见参考文献)。数据以excel文件存储。该数据集可以为基于SRTM DEM的高亚洲物质平衡研究提供重要的基础数据,可供研究冰川、气候、水文等的科研工作者使用。
崩解是南极冰架物质平衡的核心过程之一,也是精细监测冰架变化的重要物理量。作者运用2005-2020年每年8月初的多源遥感数据,包括2005-2011年的ENVISAT ASAR传感器WSM模式影像,2012-2014年Terra/Aqua MODIS传感器7-2-1波段合成影像,2013-2020年Landsat-8 OLI传感器2-3-4波段合成影像,2015-2020年Sentinel-1 SAR传感器EW模式影像,经过预处理、镶嵌得到年分辨率的环南极海岸线影像镶嵌图;结合MEaSUREs冰流速和触地线数据、冰厚度数据Bedmap和Bedmachine,应用空间计算和地图数字化技术,提取了2005年8月至2020年8月14年间南极冰架发生的所有面积在1 km²以上的年崩解事件,计算了它们的面积、厚度、体积、崩解量与崩解周期等,得到南极冰架年崩解数据集(2005-2020)。该数据集包括15个年度的南极冰架崩解分布数据,同时含有冰架崩解年份区间、崩解区长度、面积、平均厚度、崩解量、崩解周期等信息。该数据集可以直接反映不同年份南极冰架崩解的量级特征和分布情况,填补了国际上对冰架崩解定量精细评估数据的空缺,为后续崩解机理研究、冰架-冰盖系统的物质平衡研究提供基础性数据。
汞是一种全球性污染物。青藏高原毗邻当前大气汞排放最严重的地区南亚,可能受到长距离传输的影响。利用冰芯和湖芯可以很好地重建大气汞传输和沉降历史。基于青藏高原和喜马拉雅山南坡8支湖芯和1支冰芯重建了工业革命以来的大气汞沉降历史。本数据集包含青藏高原纳木错、班公错、令戈错、枪勇湖、唐古拉湖和喜马拉雅山南坡Gosainkunda湖、Gokyo湖和Phewa湖的8支湖芯数据,各拉丹冬1支冰芯数据。冰芯数据分辨率为1年,湖芯数据2~20年,数据包含汞浓度数据和沉降通量数据。
陆地实际蒸散发(ETa)是陆地生态系统的重要组成部分,它连接着水文、能量和碳循环。然而,准确监测和理解青藏高原(TP)实际蒸散发(ETa)的时空变化仍然非常困难。在此,利用MOD16-STM模型,在土壤属性、气象条件和遥感数据集的支持下,对青藏高原多年(2000-2018年)月度ETa进行了估算。估算出的ETa与9个通量塔的测量结果相关性非常好,均方根误差(平均RMSE=13.48 mm/月)和平均偏差(平均MB=2.85 mm/月)较低,相关系数(R=0.88)和一致性指数(IOA=0.92)较高。2000年至2018年,整个TP和东部TP(Lon>90°E)的空间平均ETa显著增加,增速分别为1.34 mm/年(P<0.05)和2.84 mm/年(P<0.05),而西部TP(Lon<90°E)未发现明显趋势。ETa及其组分的空间分布不均匀,从东南向西北TP递减。东部ETa呈显著上升趋势,西南部ETa全年呈显著下降趋势,尤其是冬春两季。土壤蒸发(Es)占总ETa的84%以上,其时间趋势的空间分布与年平均ETa相似。春季和夏季的ETa变化幅度和速率最大。陆表ETa的多年平均年值(面积2444.18×10^3 km2)为376.91±13.13 mm/年,相当于976.52±35.7 km3/年。整个TP(包括所有高原湖泊,面积2539.49×10^3 km2)的年平均蒸发水量约为1028.22±37.8 km3/年。新的ETa数据集有助于研究土地覆被变化对水文的影响,有助于对整个TP的水资源管理。
本数据集是2019年9月川藏铁路沿线典型植被无人机高光谱观测数据,使用的是大疆M600 Resonon成像系统的机载光谱仪。包括2019年在拉萨的草原区域观测的高光谱数据,自带经纬度。高光谱调查时基本为晴天。飞行前进行了白板校准;采集数据时设有靶标(即适于草地的标准反光布),用于光谱校准;设有地面标志点(即有字母的泡沫板照片),并记录了每个标志点的经纬度坐标,用于几何精确校准。无人机高光谱相机记录的dn值,可使用Spectronon Pro软件转换为反射率。高光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
包括典型冰川(浪卡子县枪勇冰川:东经90.23°,北纬28.88°,海拔4898米,地表覆被为基岩;申扎县甲岗山冰川:东经88.69°,北纬30.82°,海拔5362米,地表覆被为碎石和杂草)2019-2020年自动气象观测数据。枪勇冰川记录包含1.5米温度、1.5米湿度、2米风速、2米风向、地表温度等数据。该自动气象站的数据采用USB离线获取的方式收集,初始记录时间为2019年8月6日19时10分,记录间隔为10分钟,2019年10月24日现场下载数据,未能连接上。2020年12月20日16:30到现场下载数据,仍然无法连接到电脑,于是将数采仪取回带到北京后将数据读出。数据未缺失,但风速数据在2020年7月14日9:30之后有问题(极可能是风向标被破坏所致)。甲岗山冰川初始记录时间为2019年8月9日15时00分,记录间隔为1分钟,电源主要是通过蓄电池和太阳能板来维持。该自动气象站无内部存储,数据每小时通过GPRS上传至HOBO网站,由专人定期下载。2020年1月5日23:34,1.5米温湿度传感器出现异常,温度和湿度数据丢失。2020年6月30日21:20之后所有数据完全无法通过网站下载。2020年12月19日将数采仪取回,下载到2020年6月23日19:43至9月25日3:36的数据。之后更换温湿度传感器,于12月21日12:27重新开始观测。目前数据由三段组成(2019.8.9-2020.6.30;2020.6.23-2020.9.25;2020.12.19-2020.12.29),经检查,数据有部分缺失,个别数据因记录电池电压,时间上有重复,需要核对。甲岗山冰川前端气象观测数据使用美国ONSET 公司HOBO RX3004-00-01型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。枪勇冰川前端气象观测数据使用美国ONSET 公司HOBO U21-USB型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。
本数据包括北极Barrow地区不同年龄冻土土壤细菌物种组成数据,可用来探索土壤微生物对冻土消融的响应及不同年龄冻土的土壤细菌差异;本数据为扩增子测序结果,引物为Earth Microbiome Project 标准引物 515F–806R,扩增范围为V4区,测序平台为Illumina Hiseq PE250; 数据通过质量控制,至少达到Q30水平;本数据用于发表于Cryospshere文章Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 2020, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020。本数据还可用于三极土壤微生物比较分析研究
农业灌溉需要消耗大量的可利用淡水资源,是人类对自然水循环过程最直接的扰动,加速了区域水循环的同时伴随着冷却作用。因此,估算灌溉用水对于探索人类活动对自然水循环的影响、量化水资源收支、优化农业水资源管理配置等具有重要意义。然而,目前灌溉用水数据主要是基于调查统计结果,数据空间分布离散且缺乏统一性,无法满足对灌溉用水的时空变化进行估算的需求。全球灌溉农田灌溉用水量遥感估算数据集(2011-2018)是基于卫星土壤湿度、降水、植被指数以及气象资料入辐射与气温等要素,通过土壤水量平衡原理,耦合遥感蒸散发过程模块以及利用基于差分优化的数据-模型融合算法来估算全球灌溉农田实际灌溉用水量。该数据集的灌溉用水估算结果相比传统的离散调查统计数据在不同空间尺度(区域、州/省和国家)上具有较小的偏差,如中国各省2015年农业用水统计结果对比(bias = −3.10 km^3),美国各州2013年调查数据结果对比(bias = −0.42 km^3)以及粮农组织各个国家尺度对比结果(bias = −10.84 km^3)。而且,相较于基于单个降水和土壤水分卫星产品的估算结果,该集合数据显示出更低的不确定性。此外,数据统一采用全球地理经纬度格网,相关元数据存储在对应的NetCDF文件内,空间分辨率约为25公里,时间分辨率为月尺度,时间跨度为2011年−2018年。该数据集将有助于定量评估历史时期农业灌溉用水的时空格局和支撑科学农业用水管理等。
本数据集包含青藏高原东部玛曲县一个流域的钻孔岩性数据,高程数据,土壤厚度和地表坡度数据,水文地质调查数据,和物探数据。钻孔岩性数据来源于2017年钻孔 ITC_Maqu_1;高程数据来源于2019年RTK测量;土壤厚度和地表坡度数据来源于2018年和2019年螺旋钻和坡度仪测量;水文地质调查包括2018年和2019年的地下水位埋深测量数据,和2019年的含水层测试数据;物探数据包括2018年的MRS核磁共振数据、ERT电阻率成像数据,和2019年的TEM瞬态电磁数据、磁化率测量数据。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件